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ABSTRACT
Leveraging recent advancements in large language models, modern
neural code completion models have demonstrated the capability to
generate highly accurate code suggestions. However, their massive
size poses challenges in terms of computational costs and environ-
mental impact, hindering their widespread adoption in practical
scenarios. Dynamic inference emerges as a promising solution, as it
allocates minimal computation during inference while maintaining
themodel’s performance. In this research, we explore dynamic infer-
ence within the context of code completion. Initially, we conducted
an empirical investigation on GPT-2, focusing on the inference
capabilities of intermediate layers for code completion. We found
that 54.4% of tokens can be accurately generated using just the first
layer, signifying significant computational savings potential. More-
over, despite using all layers, the model still fails to predict 14.5% of
tokens correctly, and the subsequent completions continued from
them are rarely considered helpful, with only a 4.2% Acceptance
Rate. These findings motivate our exploration of dynamic inference
in code completion and inspire us to enhance it with a decision-
making mechanism that stops the generation of incorrect code. We
thus propose a novel dynamic inference method specifically tailored
for code completion models. This method aims not only to produce
correct predictions with largely reduced computation but also to
prevent incorrect predictions proactively. Our extensive evaluation
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shows that it can averagely skip 1.7 layers out of 16 layers in the
models, leading to an 11.2% speedup with only a marginal 1.1%
reduction in ROUGE-L.
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1 INTRODUCTION
As one of the core functionalities of modern integrated develop-
ment environments (IDEs), code completion significantly boosts
developer productivity by predicting the next few tokens that are
likely to be implemented for a given code context. Recently, pre-
trained large language models (LLMs) for code, i.e., Large Code
Models (LCMs), have achieved remarkable performance in the code
completion task [14]. Motivated by the strong product-market fit
and immense business value, a large number of LCM-based com-
mercial code completion applications have been released, including
Github Copilot [2], Cursor [5], and Amazon CodeWhisperer [3].

LLMs, with their billions of parameters, necessitate deployment
on expensive GPU servers, resulting in substantial financial costs
(e.g., approximately $700,000 per day for ChatGPT [4]) and signifi-
cant environmental impacts due to high energy consumption and
CO2 emission (e.g., 12,800metric tons of𝐶𝑂2 per year for GPT-3 [8]).
In code completion tasks, the LCM services are usually integrated
into IDEs, meaning that the completion requests are automatically
issued whenever a typing pause is detected by the IDE, resulting
in more frequent and intensive requests compared to typical LLM-
based conversational services. This elevated demand for LCMs in
IDEs exacerbates the financial and environmental impacts. More-
over, it can limit the practical utilization and commercialization of
LCM-based code completion applications.

Dynamic inference [10, 16, 20, 25, 31] is one of the most promis-
ing techniques to mitigate this urgent issue associated with large
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Figure 1: Examples to demonstrate the effects of SEC, where the
left and right of the figure respectively demonstrate the scenario of
STOP and EXIT.

models. It allows the model to skip some computation and directly
output the result when the finished computation suffices to pro-
duce a correct result. For example, DeeBert [35] can achieve a 24%
speedup in the inference for the sentiment analysis task without
sacrificing accuracy. However, the performance of the dynamic
inference methods shows significant diversity in different down-
stream tasks. When applied to textual entailment recognition, Dee-
Bert only achieves a 9% speedup but comes at the cost of a 0.6%
reduction in accuracy [35]. Thus, despite the promising potential
advantage of dynamic inference, whether and to what extent the
code completion systems can benefit from the dynamic inference
methods is yet to be explored.

As a starting point, we conducted an empirical study (refer to Sec-
tion 3.1 for more details) on GPT-2 [23], a 12-layer popularly used
LCM fine-tuned with Java code snippets. Our investigation aimed
to reveal the minimum number of layers required to achieve accu-
rate predictions. To gain insights into the dynamics of individual
layers’ contributions to the prediction process, we evaluated GPT-2
on a simplified task of next token prediction instead of generat-
ing complete code completions. Surprisingly, we discovered that
54.4% of tokens can be correctly generated using just the first layer,
indicating that a significant portion of the computing resources
utilized by the LCM is unnecessary when all layers are always used.
It highlights the importance of dynamic inference in the context of
code completion.

Additionally, we observed that GPT-2 fails to correctly predict
14.5% of tokens even with all its 12 layers. A manual inspection was
conducted to determine the acceptance of continued completions
for these wrongly predicted tokens. The results showed a low accep-
tance rate of 4.2%, significantly lower than the 46.7% acceptance rate
for completions generated from randomly sampled code contexts.
The low helpfulness of these continued completions for incorrectly
predicted tokens implies that generating them wastes computa-
tional resources. Presenting such incorrect predictions could also
be misleading for developers and hinder their productivity [32].

The encouraging findings from our study inspired us to explore
the application of dynamic inference in code completion tasks.
Meanwhile, we also identified that current dynamic inference meth-
ods can be further enhanced to better suit the specific characteristics

of code completion tasks. Existing methods are primarily tailored
for non-collaborative tasks, such as classification, and consequently,
they always produce an output for the user. However, code comple-
tion is a collaborative process involving human intervention, where
the requests are automatically issued, and the developer needs to
evaluate and integrate the generated suggestions. Unfortunately,
some of the completions generated by these methods may not
be helpful and could significantly impede the completion process,
leading to negative consequences [21, 29]. From the perspective
of developers, having nothing displayed is preferable to receiving
unhelpful and time-wasting completions. To this end, we believe
that the dynamic inference method designed for the code com-
pletion task should include a decision-making mechanism to stop
generating incorrect code. This feature, to the best of our knowl-
edge, is novel in the context of dynamic inference and addresses a
critical demand for improving the quality and effectiveness of code
completions.

To fill this gap, we design a dynamic inference method for the
code completion task, named Stop&Exit Controller (SEC). It not
only skips the unnecessary computation for generating each to-
ken (denoted as Exit) but also timely “gives up” (i.e., stopping the
generation of current and subsequent tokens and outputting the
sequence of already generated tokens) when realizing the current
input is insufficient for a correct prediction (denoted as Stop). For
a clearer understanding of SEC’s functionality, we resent two il-
lustrative examples in Figure 1. In the scenario on the left-hand
side, the model recognizes that continuing the generation would
lead to an incorrect completion and, therefore, decides to STOP
generating any further tokens. In the second scenario, the model
successfully generates the correct completion with just a few layers
and promptly decides to EXIT early. Adapting from the existing
methodologies in dynamic inference [25], SEC utilizes a linear clas-
sifier to make informed decisions as the input code context passes
through each layer of the LCM during the generation process. By
incorporating SEC into the process, fewer layers are involved in
generating tokens, resulting in reduced computational overhead
and generating fewer unhelpful suggestions. Importantly, the clas-
sifier used in SEC has only thousands of parameters, contributing
negligible computational cost to the overall inference process.

To sufficiently evaluate the effectiveness of SEC, we conduct a
comprehensive evaluation with multiple settings, including two
programming languages (i.e., Java and Python), two widely used
LCMs (i.e., GPT-2 and CodeGen), and tens of threshold settings.
Firstly, wemeasure the accuracy of the action classifier in predicting
proper actions. The action classifier can achieve high Precision for
both Stop and Exit, respectively 0.812 and 0.944 at the 0.9 threshold,
which is necessary for preserving the LCM’s performance. Next,
we investigate the computational efficiency of the SEC-enhanced
LCMs. Surprisingly, on average of all the settings, SEC can skip 1.7
layers out of 16 layers of the LCMs and speeds up 11.2% during
the completion generation with only a 1.1% ROUGE-L reduction.
More importantly, the Acceptance Rate of the completions is well
preserved or even improved since SEC can prevent the unhelpful
part in a piece of code completion from being generated. Among six
evaluated threshold settings, only one aggressive setting achieves a
slightly reduced Acceptance Rate, from 46.7% to 44.9%, but speeds
up the inference by 71%.
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Figure 2: Demonstration of the typical generation process of a 4-
layer Transformer, where the model generates four tokens for the
input sequence using four steps. [SOS] and [EOS] are special tokens
respectively indicating the start of the input sequence and the end
of the generation.

To the best of our knowledge, this is the first study and adaption
of dynamic inference methods for LCM-based code completion
systems. Our contribution can be summarized as follow:
• An experimental investigation on the inference capability of
intermediate layers of LCMs, which reveals the potential wastes
caused by unnecessary computation and the consequences of
wrongly predicted tokens.

• A dynamic inference method, Stop&Exit Controller (SEC), de-
signed for the code completion task, to not only skip the unnec-
essary computation but also prevent the LCMs from generating
unhelpful completions.

• A comprehensive evaluation, demonstrating the feasibility and
effectiveness of SEC.
To facilitate future research and industrial practices, the code of

SEC is available at https://github.com/v587su/SEC.

2 BACKGROUND ON TRANSFORMER-BASED
CODE COMPLETION

In this section, we provide a brief recap of the working mecha-
nism of Transformer [33] in the context of code completion, given
that Transformer and its variants have emerged as the dominant
architecture for LCMs. As most LCMs for code completion are
decoder-only, we will focus on its decoder network and only reveal
details relevant to our method, for the sake of simplicity. Readers
can refer to [33] for a comprehensive understanding of Transformer.

The decoder of a Transformer model consists of stacked layers,
and each layer contains a self-attention component that maintains a
set of attention states. Figure 2 provides an illustrative example of a
Transformer with four stacked layers, showcasing its code comple-
tion process for the context “text =”. Before inputting the context
into the Transformer, it undergoes tokenization, forming a sequence
of tokens. Additionally, a special token, [SOS], is appended to mark
the sequence’s beginning. The tokens are sequentially processed
by the Transformer, triggering feed-forward propagation across all
layers. Each token’s representation is computed and output by the
final layer (Layer 4 in the example). Once all tokens in the code
context are processed, the representation of the last token is fed to

Table 1: An investigation of the number of layers required to cor-
rectly predict the next token for a given code context.

Layers Failed 1 Layer 2-5 Layers 6-11 Layers 12 Layer
Proportion 14.5% 54.4% 9.0% 19.2% 0.9%

the Language Model Head (LM Head), a softmax-normalized linear
classifier, to predict the next token. The newly generated token un-
dergoes the same feed-forward propagation, predicting one more
token. This process continues until the token [EOS] is generated,
indicating the end of the completion, or a pre-set maximum number
of tokens is reached.

Now we explain the self-attention mechanism in detail. This
mechanism facilitates the propagation of context information not
only from shallow layers to deep layers but also across different
rounds in a layer-specific manner. In each layer, there are two types
of states: the attention state and the hidden state. During each
round, the layer calculates its attention state using the recorded
attention states from all historical rounds of the same layer, along
with the hidden state of its preceding layer (except for the first layer,
which uses the token embedding instead). Subsequently, the layer
computes its hidden state using the updated attention state and the
hidden state of its preceding layer. The final hidden state of the last
layer serves as the representation of all tokens consumed up to that
point. This representation is known as a contextualized represen-
tation, containing the embedded context information. In Figure 2,
we visualize how the attention states of Layer 3 propagate across
different feed-forward rounds with dashed purple arrows. Gaining
a deep understanding of how the context information is exchanged
and updated within the self-attention mechanism is important for
designing dynamic inference methods, as they also rely on the atten-
tion state and the hidden state to effectively control the inference
process during runtime.

3 EMPIRICAL INVESTIGATION
The fundamental assumption of dynamic inference lies in the no-
tion that certain layers in the model are not essential for accurate
predictions on some inputs. By dynamically allocating the neces-
sary layers during the inference stage, we can significantly reduce
the computational cost associated with redundant layers. The more
redundant layers we can identify, the greater the potential cost
savings, making dynamic inference particularly effective in such
scenarios. Despite the promising prospects of dynamic inference,
its feasibility in the context of code completion tasks remains un-
explored. To address this gap, we conducted an empirical study
on a widely used LCM, GPT-2 [23] (224M parameters, 12 layers),
fine-tuned on a code dataset, COFIC [30]. COFIC comprises 764,985
Java code snippets for training and 84,998 for conducting the inves-
tigation. The readers can refer to Section 5 for more details about
the model and dataset. Specifically, our study explores the following
two Investigation Research Questions (IRQs):
IRQ1: For different inputs, how many layers of the LCM are indis-
pensable to yield correct predictions?
IRQ2: Is it advantageous to continue code completion after a wrong
token has been generated?

IRQ2 is a natural follow-up to IRQ1, as it examines the quality
of the generated code following a wrong token prediction. In other
words, it assesses whether predicting a wrong token serves as an

https://github.com/v587su/SEC
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indicator of the subsequent code generation’s quality. Through
addressing these research questions, we aim to shed light on the
potential benefits and limitations of dynamic inference for code
completion tasks.

3.1 IRQ 1: Number of Indispensable Layers
To address IRQ1, we evaluate GPT-2 on a simplified task, next token
prediction, a widely used task for pre-training LCMs [18, 22, 37]. In
this task, our objective is to find the minimum number of layers in
the GPT-2 model necessary to achieve accurate predictions for the
next token in code completion. To enable each layer to provide a
prediction for the next token, we associate each intermediate layer
of GPT-2 with an intermediate LM head. The LM head takes in the
hidden state of the corresponding layer and predicts the next token.
We train the LM heads jointly using a summed loss, such that the
prediction performance of every head is sufficiently optimized with-
out favoring any specific layer. Further details about the design and
training of these LM heads are available in Section 4.2.1. Intuitively,
we hypothesize that the hidden state of a deeper layer provides
more informative cues than a shallow one. In other words, if a shal-
low layer correctly predicts the next token, it indicates sufficient
information has been captured. Therefore, during the prediction
on the testing set, we report the shallowest layer that achieves the
correct answer as the minimum number of layers indispensable for
the inference. In cases where all 12 layers produce incorrect results,
we mark the prediction for that token as failed.

The results of this exploratory experiment are reported in Table 1.
Surprisingly, only 0.9% of tokens require the full computing capac-
ity (i.e., 12 layers) of GPT-2, while 54.4% of tokens can be correctly
predicted using the first layer solely. This finding highlights the inef-
ficiency of the fixed “best-effort” inference mechanism of the LCM,
leading to substantial computational waste. The average number
of required layers per token is 2.5 layers, and consequently, around
80% of computation can be saved if we could perfectly decide how
many layers should be used to predict each token. This represents
the theoretical upper bound of computational resources that can
be saved for GPT-2 while preserving its performance. However,
achieving perfect decisions on the minimum number of layers for
every token in the diverse and complex code contexts is extremely
challenging. Despite the difficulty, even solutions with modest per-
formance could lead to significant computational savings. Moreover,
the predictions for 14.5% of tokens fail, revealing the high likeliness
of the LCM to produce incorrect tokens. Notably, it is the propor-
tion for one single token, while a piece of code completion usually
composes tens of tokens. However, we are unclear whether such
incorrect predictions are still helpful to developers, which will be
investigated in IRQ2.

Finding 1: On average, only 2.5 layers, instead of 12 layers,
are actually required by the LCM, where around 80% of the
computational resources are unnecessary.

3.2 IRQ2: Helpfulness of the Completion after
Generating a Wrong Token

We further study the effects of the 14.5% failed predictions in IRQ1
on the helpfulness of the code completions using the same dataset

and model. For each failed token observed in IRQ1, we additionally
let the model finish the whole completion, forming a group of con-
tinued completions. A control group is derived by completing ran-
domly selected code contexts in the testing set. By measuring and
comparing the helpfulness of the completions in these two groups,
we can understand the effects of these failed predictions. According
to the prior study [39], among tens of alternative measures, the
Acceptance Rate (the possibility of a piece of code completion being
accepted by the developer) of code completion is the best metric
for measuring the helpfulness of the completions in practice. Thus,
a manual inspection is conducted to measure the Acceptance Rate
instead of computing automated metrics for accuracy.

Specifically, two Ph.D. students with over 3 years of Java experi-
ence are recruited as volunteers for this inspection. Given the code
context, generated code completion, and the ground truth, they are
asked to mark if the generated code completion can be accepted as
a continuation of the code context. The ground truth is provided
to help annotators accurately understand the exact intent of the
code context. Therefore, syntactically correct but unintended com-
pletions are also labeled as unaccepted. The accepted completions
should exactly match or achieve the same intention as the ground
truth (the next 10 tokens in the origin code snippet). The inspection
checks two groups of completions: the continued completions after
wrongly predicted tokens and the ones for random code context
samples as a controlled baseline. As it is non-trivial to manually
annotate all the completions, we sample a subset (383 completions)
from each group, where the sample size of each group is statistically
computed at a 95% confidence level according to [9]. During the
annotation, the two annotators first independently annotate each
subset and then discuss to reconcile all disagreements, thus mitigat-
ing the bias. The proportion of accepted completions is computed
as the Acceptance Rate.

The results of the annotation reveal that the Acceptance Rate of
the continued completions after wrongly predicted tokens is only
4.2%, which is significantly lower than that of the control group,
46.7%. An important conclusion can be drawn that if a specific
token is wrongly generated, its subsequent generation is rarely
helpful. It also motivates us to reduce unhelpful completions by
terminating the generation for tokens that are foreseen to be in-
correct. Though the helpfulness of the code completions cannot
be comprehensively assessed solely based on the correctness of
the first token, it still provides a promising strategy for reducing
unhelpful completions. The evaluation of our proposed method
(cf. Section 6.3) demonstrates the effectiveness of this strategy.

Finding 2: The continued completions after wrongly pre-
dicted tokens are rarely helpful, with an Acceptance Rate of
only 4.2%.

4 PROPOSED METHOD
This section presents our dynamic inference framework, Stop&Exit
Controller (SEC), to help the neural code completion model wisely
allocate its computational resources during inference. Below, we
first describe the working mechanism of SEC during each inference
(Section 4.1) and its training method (Section 4.2), then introduce
the generation process of an SEC-enhanced LCM (Section 4.3).
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Figure 3: Demonstration of the working mechanism of SEC. The left part shows how SEC controls the inference using a classifier after Layer 𝑖
computing its hidden state. The right part showcases the generation process of a 4-layer SEC-enhanced LCM, where SEC exits at Round 4&6
and stops at Round 5. The layers skipped by SEC are in grey color.

4.1 Stop&Exit Controller for Dynamic Inference
SEC embeds a controller between the layers of the LCM to wisely
decide when to skip the rest computation or timely “give up” (i.e.,
stopping the prediction of current and subsequent tokens). As re-
capped in Section 2, in each Round, the LCM predicts one next
token for the current input sequence. Assume an input token se-
quence 𝑥 = (𝑤1, ...,𝑤𝑝 ,𝑤𝑝+1 ...,𝑤𝑡 ), where the first 𝑝 tokens form
the input code context and the last 𝑡 −𝑝 tokens are newly generated
so far. The inference Round of an LCM without SEC predicts the
next token 𝑤𝑡+1 using all of its layers for the token sequence 𝑥 .
Namely, 𝑥 goes through the 𝑛 layers 𝐿1, ..., 𝐿𝑛 of the LCM during
which for each token𝑤 𝑗 ∈ 𝑥 , a hidden state ℎ𝑖

𝑗
is computed at the

layer 𝐿𝑖 , where h0𝑗 = 𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔(𝑤 𝑗 ) and h𝑖𝑗 = 𝐿𝑖 (h𝑖−1𝑗 ) for 𝑖 > 0.
Next, an LM head𝐻𝑒𝑎𝑑𝑛 predicts the next token𝑤𝑡+1 for the token
sequence 𝑥 based on the hidden state h𝑛𝑡 of the last token 𝑤𝑡 at
the last layer 𝐿𝑛 , formally: 𝑤𝑡+1 = 𝑎𝑟𝑔𝑚𝑎𝑥 (𝐻𝑒𝑎𝑑𝑛 (h𝑛𝑡 )). SEC en-
hances this inference process by predicting the subsequent actions
for some specified layers of the LCM to behave, using its action
classifier 𝐶 . For brevity but without loss of generality, we assume
SEC is set to control the subsequent behavior of every intermediate
layer of the LCM. We remark that SEC maintains only one classifier
for all layers, instead of multiple action classifiers, to keep the SEC-
enhanced LCM as lightweight as possible. As demonstrated on left
of Figure 3, after the layer 𝐿𝑖 finishes its computation, the hidden
state h𝑖𝑡 of the last token 𝑤𝑡 will be fed to the action classifier 𝐶
to decide the next action 𝐴𝑖 among three options: Stop 𝐴𝑠 , Exit 𝐴𝑒 ,
and Continue 𝐴𝑐 , computed as follows:

p𝑖 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝐶 (h𝑖𝑡 )),

𝐴𝑖 =


𝐴𝑠 , if 𝑎𝑟𝑔𝑚𝑎𝑥 (p𝑖 ) = 𝐴𝑠 and𝑚𝑎𝑥 (p𝑖 ) > 𝛼 ;
𝐴𝑒 , if 𝑎𝑟𝑔𝑚𝑎𝑥 (p𝑖 ) = 𝐴𝑒 and𝑚𝑎𝑥 (p𝑖 ) > 𝛽 ;
𝐴𝑐 , otherwise;

where 𝛼 and 𝛽 are two user-defined thresholds to respectively limit
the minimal confidence score of 𝐴𝑠 and 𝐴𝑒 . A higher threshold
makes the decision of the action classifier 𝐶 more conservative.

The corresponding behavior of the inference process for each
action predicted by SEC is described as follows:

Stop: Stop is to immediately stop the current round and subsequent
generation rounds for the input code context. Specifically, it inter-
rupts the ongoing inference and returns a special token [STOP].
After receiving this special token, the generation process will be
stopped and the sequence of tokens that have been generated so
far will be displayed to the user. Stop is designed for the case when
the rest yet-to-generate part of the completion is unhelpful. Thus,
subsequent tokens will not be generated to reduce the harm of
unhelpful completions to development productivity and preserve
computational resources.

Exit: Exit is to generate the next token with the hidden state of the
current layer and skip the rest layers of the current inference. It is
a widely investigated action for accelerating model inference [38].
Predicting the next tokenwith the hidden state relies on an LMhead,
but the inherent LM head𝐻𝑒𝑎𝑑𝑛 of the LCM is only applicable to the
hidden state of the last layer. Thus, SEC pairs an additional LM head
𝐻𝑒𝑎𝑑𝑖 for each intermediate layer 𝐿𝑖 to fulfill the prediction. We
will describe their training in Section 4.2.1. Once Exit is predicted by
the classifier𝐶 after the layer 𝐿𝑖 , the current hidden state h𝑖𝑡 will be
directly fed to the LM head 𝐻𝑒𝑎𝑑𝑖 of this layer to compute the next
token𝑤𝑡+1, where𝑤𝑡+1 = 𝑎𝑟𝑔𝑚𝑎𝑥 (𝐻𝑒𝑎𝑑𝑖 (h𝑖𝑡 )). Theoretically, if the
classifier𝐶 can properly make the decision of Exit, the performance
of the LCM will be well preserved. Considering the computation
for the rest (𝑛 − 𝑖) layers is saved, the inference of the LCM can be
faster and cheaper without sacrificing its performance.

Continue: Continue is to proceed to compute the hidden state h𝑖+1𝑡

of the next layer 𝐿𝑖+1 by: h𝑖+1𝑡 = 𝐿𝑖+1 (h𝑖𝑡 ). It is the default action
for an LCM. SEC takes this action when neither Exit nor Stop is
predicted by the classifier 𝐶 . After the new hidden state h𝑖+1𝑡 is
computed, a new action may be predicted by the classifier 𝐶 until
the inference ends at the final layer.

4.2 Training SEC
Among the components of SEC, the action classifier𝐶 and the inter-
mediate LM heads {𝐻𝑒𝑎𝑑1, ..., 𝐻𝑒𝑎𝑑𝑛−1} are neural networks that
need to be trained. We first introduce the training of the intermedi-
ate LM heads, then the action classifier.

4.2.1 Training Intermediate LM heads. To enable each layer to
produce a prediction, each intermediate layer 𝐿𝑖 of the LCM is
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Figure 4: The training process required for integrating SEC for an LCM (contains 𝑛 layers). The Layers and LM Heads with shadows indicate
that they are well-trained and their parameters are frozen during training.

paired with an intermediate LM head 𝐻𝑒𝑎𝑑𝑖 which predicts the
next token based on the hidden state of the layer 𝐿𝑖 . Note that the
inherent LM head 𝐻𝑒𝑎𝑑𝑛 of the last layer 𝐿𝑛 is already trained dur-
ing the training of the LCM, and thus does not need to be re-trained.
These intermediate LM heads are one-layer linear classifiers that
are integrated into the well-trained LCM and independently trained
without affecting the inherent parameters of the LCM. Thus, com-
pared with the training of the LCM, the cost of training such simple
linear classifiers is negligible. In detail, the training of these inter-
mediate LM heads is similar to that of the LM head 𝐻𝑒𝑎𝑑𝑛 except
for involved layers. Moreover, we use the same dataset, i.e., the
corpus of source code files, for the training. Thus, no additional
training data or annotation efforts are required for training the
intermediate LM heads. The training process of intermediate LM
heads is visualized on the left of Figure 4. Given a tokenized code
snippet 𝑥 = (𝑤1, ...,𝑤𝑝 ) from the training dataset, a training sample
is derived for each token𝑤 𝑗 except for the last one𝑤𝑝 . One train-
ing sample for 𝐻𝑒𝑎𝑑𝑖 is a pair (h𝑖𝑗 ,𝑤 𝑗+1), where h𝑖𝑗 is the hidden
state of the layer 𝐿𝑖 computed by the LCM and 𝑤 𝑗+1 is the next
token of the token 𝑤 𝑗 to serve as the ground truth. With a train-
ing sample (h𝑖

𝑗
,𝑤 𝑗+1), each intermediate LM head computes a loss

values 𝑙 between its predictions and the ground truth𝑤 𝑗+1, where
𝑙 = 𝐿𝑜𝑠𝑠 (𝐻𝑒𝑎𝑑𝑖 (h𝑖𝑗 )),𝑤 𝑗+1). The gradients are back-propagated to
update the parameters of the intermediate LM head 𝐻𝑒𝑎𝑑𝑖 .

4.2.2 Training An Action Classifier. During the inference process
of an SEC-enhanced LCM, its action classifier 𝐶 predicts the sub-
sequent action for each specified intermediate layer based on its
hidden state. Its supervised training requires a specific training
dataset, the construction of which amounts to assigning a proper
label, i.e., a subsequent action, to the hidden state of each speci-
fied intermediate layer. Thus, the training sample is a pair (h𝑖

𝑗
, 𝐴𝑖

𝑗
),

where the hidden state h𝑖
𝑗
is obtained following the same way as

that of intermediate LM heads introduced in Section 4.2.1 and the
action 𝐴𝑖

𝑗
is assigned according to the performance of all the layers.

As shown in the right of Figure 4, we first predict a next token
𝑤𝑖
𝑗+1 with the hidden state h𝑖

𝑗
of each layer using the well-trained

intermediate LM head 𝐻𝑒𝑎𝑑𝑖 (LM Head 𝐻𝑒𝑎𝑑𝑛 for the hidden state
h𝑛
𝑗
of the last layer). Then, we assign the label for each hidden state

h𝑖
𝑗
according to the following rules: 1) Stop when the layer 𝐿𝑖 and

all its deeper layers cannot correctly predict the next token, 2) Exit

when the layer 𝐿𝑖 can predict the correct token, 3) Continue when
neither Stop nor Exit is applicable. Formally, the assigned action 𝐴𝑖

𝑗

for the hidden state ℎ𝑖
𝑗
is defined as:

𝐴𝑖
𝑗 =


𝐴𝑠 , if𝑤𝑘

𝑗+1 ≠ 𝑤 𝑗+1, ∀𝑘 ∈ {𝑖, ..., 𝑛};
𝐴𝑒 , if𝑤𝑖

𝑗+1 = 𝑤 𝑗+1;
𝐴𝑐 , others.

Intuitively, the condition 𝑤𝑘
𝑗+1 ≠ 𝑤 𝑗+1 ∀𝑘 ∈ {𝑖, ..., 𝑛} means that

none of the rest layers can correctly predict the next token with
their LM heads, thus the stop action 𝐴𝑠 should be predicted by the
action classifier 𝐶 to stop the current and subsequent inferences.
The condition𝑤𝑖

𝑗+1 = 𝑤 𝑗+1 means that the hidden state h𝑖
𝑗
of the

layer 𝐿𝑖 is sufficient for the LM head 𝐻𝑒𝑎𝑑𝑖 to predict the correct
next token, thus the rest layers should be saved in the current
inference by assigning the Exit action 𝐴𝑒 .

With the sample pairs (h𝑖
𝑗
, 𝐴𝑖

𝑗
) constructed as above, we train a

one-layer linear classifier as the action classifier 𝐶 by minimizing a
weighted average cross-entropy loss, which is computed by:

𝐿 =

𝑛∑︁
𝑖=1

𝑚𝑖 ·𝐶𝐸𝐿𝑜𝑠𝑠 (𝐶 (h𝑖𝑗 ), 𝐴
𝑖
𝑗 ) subject to

𝑛∑︁
𝑖=1

𝑚𝑖 = 1.

Following previous studies for dynamic inference [25, 38], we set
𝑚𝑖 = 𝑖/∑𝑛

𝑘=1 𝑘 to favor deep layers, which helps preserve the
model’s performance during inference.

4.3 The Generation Process of LCMs with SEC
An LCM generates a piece of code completion in a token-by-token
manner, where one single inference process is executed to generate
one token. However, SEC is integrated into the inference process
without a global understanding of the generation of the whole
completion. Thus, some additional measures are desired to preserve
the global performance of the LCM, which are introduced as follows:

4.3.1 State Copying for Exit. As mentioned in Section 2, the com-
putation of a hidden state requires the attention state of the same
layer computed at the current round and the previous rounds. These
attention states are recorded to be reused in subsequent rounds.
However, if the inference for the token𝑤 𝑗 exits or stops at the layer
𝐿𝑖 , the attention states and hidden states of the rest (𝑛 − 𝑖) layers
will not be computed, and thus are not available when subsequent
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rounds require more layers. For a better understanding of this issue,
let us consider the example shown in Figure 3 highlighted with
purple. Layer 3 at Round 6 requires the attention states computed
at the same layer for all the previous rounds, but Exit and Stop
respectively happen in Round 4 and Round 5 with no attention
states computed at Layer 3, thus blocking the current inference. To
address this issue, we adopt a state copying mechanism. Specifically,
given the hidden state ℎ𝑖

𝑗
at the exited or stopped layer, we set all

the hidden states (ℎ𝑖+1
𝑗

, ..., ℎ𝑛
𝑗
) of the rest layers as ℎ𝑖

𝑗
so that the

attention states of these layers can be computed using the copied
hidden state ℎ𝑖

𝑗
, i.e., the hidden state of its preceding layer. Thus, for

Round 4 and Round 5 in the example, their attention states of Layer
3 were supposed to be computed based on the hidden states of
Layer 2 (which are not computed due to Exit and Stop), but with the
state copying mechanism, they are instead respectively computed
with the hidden state of Layer 1 at Round 2 and Layer 1 at Round 3.
Though, intuitively, the state copying mechanism may introduce
errors to the generation process, our experiments in Section 6.2
investigated such errors and found SEC using state copying can
achieve high efficiency with negligible sacrifice on accuracy. No-
tably, we compute the attention states of deeper layers using the
copied hidden state instead of directly copying the attention states
of the exited layer since the attention states computed by different
layers are not aligned. Compared with the full computation of a
layer, the computation of its attention state is cheap since its further
steps, e.g., computing the hidden state, are avoided.

4.3.2 Human-in-the-loop Code Completion by Stop. Recall that the
generation process of an SEC-enhanced LCM will be immediately
interrupted when Stop is predicted by SEC, namely, if the 𝑖-th gen-
erated token is [STOP], the tokens generated so far (𝑤1, ...,𝑤𝑖−1)
will be fed back to the developer, and no further tokens will be gen-
erated. Thus, as demonstrated in Figure 1, Stop can still retain the
valuable part of the completion for the developer to reuse, provid-
ing a new form of interaction to developers. Specifically, given the
partial code completion, developers can choose to accept the partial
completion and continue coding, dismiss the partial completion, or
issue the completion request for the rest part anyway. For example,
in Round 5 of Figure 3, it is hard for the LCM to decide which
API to use without enough information in the context, and thus
SEC stops the generation to avoid the cost of producing a random
guess. Further, the developer fills in the key information, i.e., the
API name strip, enabling the generation to continue. We regard this
as a new paradigm of how developers interact with the code com-
pletion system. Traditional neural code completion systems provide
automated line-level suggestions regardless of their helpfulness.
The generation process of these suggestions is out of the control of
the developers, completely relying on the capabilities of the LCM
itself. In contrast, Stop fosters a collaborative environment between
developers and code completion systems, where human intelligence
complements machine learning capabilities. Developers can provide
crucial information that the system may have difficulty inferring,
leading to more accurate and contextually relevant completions.
Additionally, the ability to stop the generation process at critical
points prevents the generation of unhelpful or incorrect sugges-
tions, thus saving developers from having to review and dismiss
irrelevant completions. With SEC as a pioneering example, we call

for more investigation in this paradigm towards more interactive
and human-in-the-loop code completion systems.

5 EXPERIMENT SETUP
In this section, we present the experimental setup of the datasets
and models, and the evaluation metrics used throughout the exper-
iments for SEC, to answer the following Experimental Research
Questions (ERQ):
ERQ1: How accurate is the action classifier of SEC?
ERQ2: How much computation can be saved by SEC?
ERQ3: How is the quality of the completions generated by SEC-
enhanced LCM?

5.1 Large Code Models
We adopt two widely used LCMs in our research community, GPT-2
and CodeGen, to fulfill the code completion tasks.
GPT-2: GPT-2 [23] is a pre-trained large language model and has
been used by the commercial code completion system Tabnine [1].
We fine-tune this model with our code datasets for the code com-
pletion task.
CodeGen: CodeGen, proposed by Salesfore [22], is an open-source
competitive LCM with Github Copilot. It has been trained on a
code corpus consisting of multiple programming languages and
is capable of the code completion task, thus can be used without
further fine-tuning in our experiments.

5.2 Datasets
In this work, we evaluate SEC for Python and Java, though SEC
is generic and applicable to other programming languages. Recall
that SEC is designed for the code completion task, where the inputs
to the LCMs are usually unfinished code. Therefore, we use code
snippet datasets instead of the popular benchmarks for LCM that
are based on natural language requirements, such as HumanEval [7].
The datasets for Java and Python are respectively:
Java: We use COFIC [30] as our Java dataset. It is collected by
extracting functions from Java repositories on Github, containing
849,984 code snippets (namely, function definitions). As usual, we
split the dataset into two proportions: 90% for training and 10% for
testing.
Python: The Python dataset is CodeSearchNet (CSN) [15]. It has
been pre-split where the train and test split respectively contain
412,178 and 22,176 code snippets and are collected from Github
repositories.

We use the train-split to fine-tune the GPT-2 model and train the
SEC for each LCM. The test-split is used to evaluate the accuracy
of SEC and the performance of SEC-enhanced LCMs.

5.3 Metrics
Three widely used metrics are adopted in our evaluation.
Recall & Precision: Recall & Precision are two classical metrics for
classification tasks, where Recall is the proportion of true samples
that are predicted to be positive and Precision is the proportion
of predicted samples that are correctly classified. We use them to
measure the accuracy of action classifiers. Since the cost of SEC is
negligible during the inference (an additional linear classier with
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Figure 5: The accuracy of the action classifier of SEC.

thousands of parameters), it is enough to produce a positive impact
in terms of efficiency or productivity by making a small number of
right decisions. Thus, Precision is more important than Recall for
the action classifier.
ROUGE-L: ROUGE-L is a recall-oriented metric that looks for the
longest common n-grams between the reference and the candidate.
We use it to measure the performance of SEC-enhanced LCMs. We
remark that Rouge-L is the best-performing one in an empirical
study that compares 6 metrics for code generation models [11].
AcceptanceRate:Acceptance Rate indicates the proportion of com-
pletions that are marked as accepted, i.e., the number of accepted
completions divided by the number of all completions. According
to [39], among tens of alternative metrics, the Acceptance Rate
of code completions is the best one for measuring the perceived
developer productivity.

Notably, both ROUGE-L and Acceptance Rate are metrics to
measure the quality of the completions but from different aspects.
ROUGE-L is automatically computed based on exactly matched
tokens. Such exact-match-based metrics may give improper credits
to completions that dissatisfy the requirements of developers but
are partially identical to the ground truth. For example, the code
completion that invokes an API in a wrong way can still receive a
high ROUGE-L score, since the API name and some symbols may
match the ground truth. In contrast, Acceptance Rate relies on the
judgment of human developers, which directly reflects the helpful-
ness of the completion in development. However, Acceptance Rate
is labor-intensive to be extensively computed. Therefore, in the ex-
periments, we use ROUGE-L to measure the sacrifice on completion
quality for the efficiency improvement, where a large number of set-
tings are evaluated, but judge the quality of completions generated
by SEC-enhanced LCMs with Acceptance Rate.

5.4 Implementation Details
GPT-2 is finetuned on a pre-trained version (124M parameters, 12
layers) with our training datasets and CodeGen is an off-the-shelf
pre-trained model (350M parameters, 20 layers). Limited by our
devices, we fail to deploy the larger versions of these LCMs. We will
analyze the impact of this limitation in Section 8. SEC is inserted
after each intermediate layer in GPT-2, but it is inserted after every

three layers in CodeGen due to the limit of our computing resources.
We respectively set the maximum number of input tokens and
generated tokens for one completion to 128 and 10, which is enough
for LCMs to understand the code context and provide a full-line
suggestion. The finetuning of the GPT-2 model and the training of
SEC (including the action classifier and the intermediate LM heads)
respectively take 10 and 5 epochs under a learning rate of 1e-5.

6 EXPERIMENTAL RESULTS
This section reports the experimental results and answers the re-
search questions.

6.1 ERQ1: Accuracy of SEC
To answer ERQ1, we evaluate the accuracy of the action classi-
fier, which is the key to the effectiveness of SEC. The accuracy is
evaluated with four experimental settings in total, including two
code datasets (i.e., Python and Java) and two LCMs (i.e., GPT-2 and
CodeGen). We respectively train and integrate the SEC (both the
classifier and the intermediate LM heads) into the LCM in each
setting. Each SEC-enhanced model is used to predict the next token
for each token of the code snippet from the test set, where the
classifier’s decisions at each layer are recorded. It is noteworthy
that the predicted actions are not executed in ERQ1 to observe the
predictions from deeper layers. Since Continue is the default action
of LCMs, we focus on the accuracy for Exit and Stop actions. In each
setting, we respectively run the evaluation under a wide range of
thresholds (0, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99, 0.999) for each action,
covering from the most conservative setting to the most aggressive
one with reasonable intervals. The accuracy metrics (Recall and
Precision) are recorded in the evaluation.

The results of the action classifier on the testing set under each
setting are reported in Figure 5. First, by setting a proper thresh-
old, both Stop and Exit can achieve significantly high Precision,
namely, the action classifier rarely makes incorrect predictions. It
is important for SEC since, being cost-friendly, SEC can produce
a positive impact in terms of efficiency or productivity by conser-
vatively making a small number of right decisions. For example,
the Precision of Stop and Exit at a threshold of 0.9 on average of
all the settings are respectively 0.812 and 0.944. Second, Exit can
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Table 2: The results of the saving effects of SEC-enhanced LCMs. The data in the gray background means that the tolerance size is too loose for
this setting, where its results are also applicable under the tighter tolerance.

Model Lang. Tolerance Exit only Stop only Both
#Layers Length Speed #Layers Length Speed #Stops ROUGE-L #Layers Length Speed #Stops

GPT-2

Python

Origin 12.0 9.7 ×1.00 12.0 9.7 ×1.00 0.0% 0.598 12.0 9.7 ×1.00 0.0%
1% 9.4 9.7 ×1.20 12.0 9.5 ×1.01 2.5% 0.591 1.1%↓ 9.4 9.6 ×1.18 2.3%
5% 8.7 9.7 ×1.28 11.8 7.8 ×1.20 31.8% 0.562 6.0%↓ 8.7 8.0 ×1.48 28.5%
10% 7.2 9.8 ×1.46 11.6 6.8 ×1.34 47.3% 0.516 13.8%↓ 7.4 7.4 ×1.84 37.7%
20% 4.2 9.9 ×2.02 10.9 5.2 ×1.67 69.5% 0.421 29.6%↓ 4.7 7.0 ×2.97 37.7%

Java

Origin 12.0 9.1 ×1.00 12.0 9.1 ×1.00 0.0% 0.732 12.0 9.1 ×1.00 0.0%
1% 11.1 9.1 ×1.06 12.0 8.6 ×1.05 8.7% 0.725 0.9%↓ 11.1 8.6 ×1.11 8.7%
5% 9.1 9.3 ×1.22 11.8 7.6 ×1.16 24.9% 0.674 7.9%↓ 9.0 7.8 ×1.42 24.9%
10% 8.3 9.5 ×1.29 11.5 6.4 ×1.31 42.9% 0.611 16.5%↓ 8.2 6.8 ×1.71 44.8%
20% 8.3 9.5 ×1.29 11.5 6.4 ×1.31 42.9% 0.611 16.5%↓ 8.2 6.8 ×1.71 44.8%

CodeGen

Python

Origin 20.0 9.6 ×1.00 20.0 9.6 ×1.00 0.0% 0.463 20.0 9.6 ×1.00 0.0%
1% 18.5 9.6 ×1.03 19.9 8.8 ×1.07 12.8% 0.457 1.3%↓ 18.5 8.8 ×1.09 12.8%
5% 17.4 9.6 ×1.05 19.7 7.8 ×1.19 29.7% 0.440 4.9%↓ 17.3 7.7 ×1.25 30.5%
10% 15.4 9.6 ×1.09 19.3 6.5 ×1.39 49.6% 0.407 12.1%↓ 15.3 6.4 ×1.54 52.0%
20% 12.5 9.7 ×1.15 18.4 5.1 ×1.73 68.1% 0.338 26.9%↓ 12.5 5.0 ×2.04 73.1%

Java

Origin 20.0 8.6 ×1.00 20.0 8.6 ×1.00 0.0% 0.623 20.0 8.6 ×1.00 0.0%
1% 18.3 8.6 ×1.03 20.0 8.3 ×1.04 6.3% 0.615 1.1%↓ 18.3 8.3 ×1.07 6.3%
5% 16.8 8.6 ×1.06 19.7 7.2 ×1.17 23.7% 0.588 5.6%↓ 16.7 7.2 ×1.24 23.7%
10% 14.5 8.7 ×1.11 19.3 6.4 ×1.29 35.8% 0.537 13.7%↓ 14.3 6.4 ×1.44 36.4%
20% 12.5 8.8 ×1.15 18.4 5.5 ×1.47 48.2% 0.476 23.6%↓ 12.2 5.6 ×1.72 50.4%

still preserve a promising Recall at a threshold of 0.95, where the
average Precision and Recall are respectively 0.959 and 0.269. Inter-
estingly, the Recall of Stop is generally a little bit low. In Table 2,
we also observed that the average number of layers used by Stop
is significantly higher than those used by Exit, approaching the
total number of layers in the LCM. This indicates that stopping the
inference immediately when one incorrect token is about to yield is
quite a challenging task. Computation with more layers is required
for the classifier to make a precise decision. We leave an in-depth
analysis and improvement of this issue as an interesting future
work. Finally, as the threshold increases, for both actions under
all the settings, Precision goes higher while Recall grows lower.
There exists a trade-off in setting the threshold, i.e., a more strict
threshold brings higher precision while leaving more cases unad-
dressed. Thus, it is recommended to train the action classifier and
experimentally evaluate its performance with different thresholds
to decide a proper one for the production environment.

Answer to ERQ1: The action classifier of SEC can be set to
achieve high Precision for Exit while maintaining a promising
level of Recall. While making a precise decision for the Stop
action is a bit more challenging, leaving space for further
improving the recall metric.

6.2 ERQ2: Computational Efficiency
To answer ERQ2, the four SEC-enhanced LCMs trained in Sec-
tion 6.1 and their original LCMs are evaluated to compare their
computational efficiency. Since both Stop and Exit can affect the
performance of the LCMs, we first conduct an ablation study to
observe their impact on efficiency independently. For each action,
we respectively set its threshold with the same threshold range as
the one in Section 6.1 and disable the other action for ablation. In
each setting, the SEC-enhanced LCM (or original LCM) generates a
piece of code completion for each given code context, where each

code context is made by randomly splitting each code snippet in the
test set into two parts: the first part is the code context being fed to
the LCM, and the second part serves as the ground truth completion
of the code context. We observe the efficiency of these generation
processes and compute multiple metrics, including #Layers (the
average number of layers involved in the computation for gener-
ating each token of each completion), Length (the average length
of each generated completion), and Speed (the ratio of the average
running speed for generating each completion compared with the
original LCM). ROUGE-L is also computed to observe the sacrifice
for efficiency. For Stop, we additionally record #Stops (the propor-
tion of the completions where a Stop happens). By comparing the
performance of SEC-enhanced LCMs and their original LCMs, we
can observe the effects of each action on efficiency.

For simplicity, we report the results by considering four toler-
ances on the reduction of ROUGE-L, i.e., 1%, 5%, 10%, 20%, which
correspond to four user preferences, but report the full results on
our website [6]. To be specific, among the results of all the thresh-
olds, for each tolerance, we report the fastest result whose reduction
on ROUGE-L falls within the range of the tolerance. The results are
shown in the left part of Table 2. Exit, designed to skip unneces-
sary computation during model inference, can significantly reduce
the computation during the generation with a slight sacrifice on
ROUGE-L. When the tolerance is within 1%, Exit can skip 1.6 out of
16 layers ( 12+202 = 16 layers) and speed up the generation by 8.1%
on average of the four settings. When a 10% sacrifice on ROUGE-L
is acceptable, the speed of SEC-enhanced LCM can be improved by
23.6% compared with the original one. The saving effect of Stop at
low tolerance (< 1%) is also satisfying, achieving an average 4.1%
of speedup by stopping in 7.6% of completions. When the toler-
ance reaches 10%, Stop can achieve superior performance to Exit,
a 33.3% speedup. Thus, both two actions are effective in boosting
computational efficiency with acceptable sacrifices on ROUGE-L.
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Table 3: The productivity measurement of SEC-enhanced LCMs on
Java dataset when both actions are enabled, AR=Acceptance Rate.

Model Thresholds ROUGE-L Length #Stops AR

GPT-2

Origin 0.732 9.7 0.0% 46.7%
1% Tolerance 0.725 0.9%↓ 8.6 11.1% 47.0%
5% Tolerance 0.674 7.9%↓ 7.8 31.8% 47.2%
10% Tolerance 0.611 16.5%↓ 6.8 57.3% 44.9%

CodeGen

Origin 0.623 8.6 0.0% 39.8%
1% Tolerance 0.615 1.1%↓ 8.3 6.3% 40.1%
5% Tolerance 0.588 5.6%↓ 7.2 23.7% 44.1%
10% Tolerance 0.537 13.7%↓ 6.4 36.4% 46.2%

Further, we investigate the saving effects of SEC by enabling
both Stop and Exit at the same time. We still adopt the thresholds
of Stop and Exit for these tolerances in the ablation study, where
the thresholds for the same tolerance are set together. As shown in
the right part of Table 2, the efficiency is significantly boosted with
both actions enabled. When using the thresholds for 1% tolerance
in the ablation study, SEC skips 1.7 layers and increases the running
speed by 11.2%, while only reducing 1.1% ROUGE-L on average of all
settings. It means that the same servers can additionally serve 11.2%
of user requests with only a 1.1% reduction in ROUGE-L, which
brings enormous economic value. More sacrifices on ROUGE-L can
bring better acceleration. On average, the thresholds for 5% and
10% tolerance, respectively, reduce 6.1% and 14.0% ROUGE-L while
increasing the speed by 34.9% and 63.5%. Notably, with a 29.6%
ROUGE-L reduction, the speed of SEC-enhanced GPT-2 (Java) is
improved to almost three times its original version.

Answer to ERQ2: SEC can effectively conserve compu-
tational resources without significantly compromising the
model’s overall performance. It skips 10.6% of computation
with only a 1.1% ROUGE-L reduction on average of all settings.

6.3 ERQ3: Quality of the Completions
To answer ERQ3, we investigate the quality of the completions
generated by SEC-enhanced LCM with both actions enabled to
profile their helpfulness in practice. We analyze the completions
generated by the SEC-enhanced LCMs and their original LCMs in
ERQ2 for Java with the thresholds of three tolerances 1%, 5%, and
10%. As mentioned in Section 5.3, ROUGE-L may not be precise
enough to measure the quality of completions in practice. Thus, we
conduct a manual inspection to measure the Acceptance Rate of the
completions. The inspection follows the same process described
in Section 3.2. There are eight groups of completions for the anno-
tators to inspect, including six groups of completions respectively
generated by SEC-enhanced GPT-2 and CodeGen under the three
thresholds and two groups of completions respectively generated
by the original GPT-2 and CodeGen. By comparing the metrics
between SEC-enhanced LCMs and original LCMs, we can observe
the effects of SEC on the quality of the completions.

The results are summarized in Table 3. Under the conserva-
tive thresholds, the quality of the completions, measured by both
ROUGE-L and Acceptance Rate, can be well preserved or improved.
For example, using the thresholds of 1% Tolerance, the Acceptance
Rate of both GPT-2 and CodeGen are respectively 47.0% and 40.1%,
even higher than their original LCMs. Considering the satisfying

saving effects under the same thresholds (shown in Table 2), SEC
can be set to preserve the quality of the completions and accelerate
the generation process at the same time. To savemore computations,
the thresholds can be more aggressive, i.e., with higher Tolerance.
When the Tolerance is 10%, on average of the two models, the num-
ber of tokens in a piece of completion drops 28.1% and the ROUGE-L
is reduced by 15.1%. However, there is no significant decrease or
even a remarkable improvement in the acceptance rate, where GPT-
2 drops from 46.7% to 44.9% and CodeGen increases from 39.8% to
46.2%. Intuitively, the reduced ROUGE metric means that fewer to-
kens are generated correctly, which leads to a reluctance on the part
of the user to accept the code completion. However, the annotators
found that Stop can let many completions, that would have been
discarded by the user if completely generated, be accepted. Limited
by the pages, we demonstrate several cases during the annotation
on our website [6], where after preventing the erroneous part by
Stop, the retained partial completion can still be helpful to the de-
velopers, thus being accepted. Therefore, though under aggressive
thresholds, the completions generated by SEC-enhanced LCMs can
still be accepted with a comparable possibility. In summary, we
can adjust the thresholds used by SEC to strike a balance between
completion quality and computational efficiency based on their
specific requirements.

Answer to ERQ3: For LCM-based code completion systems
that prioritize quality, SEC can be set conservatively to ef-
fectively preserve the completion quality while significantly
improving computational efficiency. For those that prioritize
efficiency, the completions generated by SEC-enhanced LCMs
can still maintain high acceptance rates, even with an accept-
able trade-off in accuracy.

7 RELATEDWORK
Dynamic Inference for Large Models Instead of always using all
the computations during inference, dynamic inference adaptively
allocates computations for each input. Multiple dynamic inference
techniques [13, 17, 25, 35, 36, 38] have been proposed. For example,
Li et al. [17] accelerate the inference for classification tasks by
invoking a series of models in a cascade manner. Schuster et al. [25]
propose a framework for accelerating Transformer-based large
language models. However, to the best of our knowledge, dynamic
inference has not been investigated for the code completion task,
and the performance of dynamic inference on LCMs remains open.
Furthermore, the unique nature of the code completion practices
requires LCMs to prevent unhelpful completions, which is not
covered in prior works. SEC is proposed to fill these gaps.
Neural Code Completion The neural code completion task pre-
dicts the next few tokens for a given code context. LCMs have
emerged as a dominant player in this field due to their remarkable
performance in generating accurate code completions. Recently,
a new LCM called AlphaCode [19] has been released, garnering
significant attention for its exceptional performance in program-
ming competitions. Impressively, AlphaCode achieved a ranking
in the top 54.3% among over 5,000 human participants, This suc-
cess highlights the effectiveness of LCMs in code completion and
their potential to revolutionize the field. One noticeable trend in
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the development of LCMs is the constant increase in model size.
New LCMs such as StarCoder [18] and Pangu-Coder2 [26] have
reached an impressive scale of 16 billion parameters, vastly sur-
passing earlier models like CodeBert [12] (125 million parameters)
and CodeT5 [34] (770 million parameters). While larger models
often exhibit superior performance, they also present a significant
challenge in terms of inference workload, as more parameters bring
higher computational requirements. As the size of LCMs continues
to grow, the inference costs associated with their deployment be-
come a critical concern [4, 8]. In this paper, we explore and adapt
dynamic inference as a promising solution for cost-saving in code
completion, paving the way for more resource-efficient and pro-
ductive code completion applications.

8 THREATS TO VALIDITY

Limited experiments. Limited by our devices, we only conduct
experiments on two LCMs: GPT-2 and CodeGen, both containing
hundreds of millions of parameters. Nevertheless, their architec-
tures serve as prevalent templates for current LCMs, including
newer models like StarCoder [18], which achieved state-of-the-art
performance by directly adopting the GPT-2 architecture with in-
creased parameters and training samples. Remarkably, while the
model size is expanding, the fundamental issue of computation
waste and unhelpful completions caused by the fixed inference
process remains unaddressed. Recent research [24] has even shown
that the folklore emergent abilities of large models can be attributed
to non-linear evaluation metrics. Therefore, despite these limita-
tions, the insights gained from our experiments remain valuable
for understanding inefficiency concerns in other LCMs.

Threshold. Our experiment does not recommend a universal “silver
bullet” threshold that can satisfy the requirements of code com-
pletion systems in general. An appropriate threshold should be
determined based on the trade-off between cost-saving and accu-
racy degradation. Therefore, by tuning the thresholds of SEC, the
systems can adjust the accuracy-efficiency trade-off to fit differ-
ent devices and resource constraints without retraining the LCM,
which provides real-world applications with more flexibility and
adaptability. Moreover, our method is independent of the LCM-
based code completion systems and other cost-friendly endeavors,
e.g., model compression [27, 28], allowing system providers to ex-
perimentally evaluate the settings of thresholds based on their data
logs accumulated in the production environment.

Bias in annotation The Acceptance Rate, which measures the
helpfulness of code completions, is derived from the evaluations
conducted by two experienced human annotators. Despite their
expertise, human annotators may introduce inherent biases in their
judgment, which could affect the accuracy of the acceptance rate.
To mitigate this threat, the annotators are provided with detailed
instructions and discuss to resolve any disagreements and reach
a consensus, further enhancing the reliability of their judgments.
Besides, though being sampled with a statistically decided sample
size, the small-scale groups for measuring the acceptance rate of
the completions generated by SEC-enhanced LCMs may introduce
bias to the evaluation of our approach.

9 CONCLUSION
We first experimentally found that the LCMs actually need only
a few layers in practice and the completions whose first token is
incorrect are seldom helpful. Based on these findings, we have
designed, to the best of our knowledge, the first dynamic inference
framework for code completion models, namely SEC, to optimize
LCMs in terms of their computational costs and helpfulness. The
comprehensive evaluation of SEC shows that it can significantly
speed up the inference with negligible sacrifice on ROUGE-L.

ACKNOWLEDGMENTS
This work is partially supported by the National Natural Science
Foundation of China (NSFC) under Grant No. 62072309, CAS Project
for Young Scientists in Basic Research (YSBR-040), ISCASNewCulti-
vation Project (ISCAS-PYFX-202201), ISCAS Fundamental Research
Project (ISCAS-JCZD-202302), and Open Foundation of Yunnan Key
Laboratory of Software Engineering under Grant No.2023SE102.

REFERENCES
[1] 2022. Code faster with AI completions | TabNine. Retrieved Nov 25, 2022 from

https://www.tabnine.com/
[2] 2022. GitHub Copilot · Your AI pair programmer. Retrieved Nov 25, 2022 from

https://copilot.github.com/
[3] 2022. ML-powered coding companion – Amazon CodeWhisperer – Amazon Web

Services. Retrieved Nov 25, 2022 from https://aws.amazon.com/codewhisperer/
[4] 2023. Aaron Mok. Retrieved July 31, 2023 from https://www.businessinsider.

com/how-much-chatgpt-costs-openai-to-run-estimate-report-2023-4
[5] 2023. Cursor - The AI-first Code Editor. Retrieved Jul 25, 2023 from https:

//www.cursor.so/
[6] 2023. SEC. Retrieved January 31, 2023 from https://sites.google.com/view/stop-

exit-controller
[7] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde, Jared Ka-

plan, Harrison Edwards, Yura Burda, Nicholas Joseph, Greg Brockman, Alex Ray,
Raul Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela
Mishkin, Brooke Chan, Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power,
Lukasz Kaiser, Mohammad Bavarian, Clemens Winter, Philippe Tillet, Felipe Pet-
roski Such, David W. Cummings, Matthias Plappert, Fotios Chantzis, Elizabeth
Barnes, Ariel Herbert-Voss, William H. Guss, Alex Nichol, Igor Babuschkin,
S. Arun Balaji, Shantanu Jain, Andrew Carr, Jan Leike, Joshua Achiam, Vedant
Misra, Evan Morikawa, Alec Radford, Matthew M. Knight, Miles Brundage, Mira
Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario Amodei, Sam McCan-
dlish, Ilya Sutskever, and Wojciech Zaremba. 2021. Evaluating Large Language
Models Trained on Code. ArXiv abs/2107.03374 (2021).

[8] Andrew A Chien, Liuzixuan Lin, Hai Nguyen, Varsha Rao, Tristan Sharma, and
Rajini Wijayawardana. 2023. Reducing the Carbon Impact of Generative AI
Inference (today and in 2035). ACM Hot Carbon 2023 (2023).

[9] William G Cochran. 1977. Sampling techniques. Wiley Eastern Limited.
[10] Xin Dai, Xiangnan Kong, and Tian Guo. 2020. EPNet: Learning to Exit with Flexi-

ble Multi-Branch Network. conference on information and knowledge management
(2020).

[11] Mikhail Evtikhiev, Egor Bogomolov, Yaroslav Sokolov, and Timofey Bryksin. 2023.
Out of the bleu: how should we assess quality of the code generation models?
Journal of Systems and Software 203 (2023), 111741.

[12] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,
Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, and Ming Zhou. 2020. Code-
BERT: A Pre-Trained Model for Programming and Natural Languages. ArXiv
abs/2002.08155 (2020). https://api.semanticscholar.org/CorpusID:211171605

[13] Lu Hou, Zhiqi Huang, Lifeng Shang, Xin Jiang, and Qun Liu. 2020. DynaBERT:
Dynamic BERT with Adaptive Width and Depth. ArXiv abs/2004.04037 (2020).

[14] Xinyi Hou, Yanjie Zhao, Yue Liu, Zhou Yang, Kailong Wang, Li Li, Xiapu Luo,
David Lo, John Grundy, and Haoyu Wang. 2023. Large language models for soft-
ware engineering: A systematic literature review. arXiv preprint arXiv:2308.10620
(2023).

[15] Hamel Husain, Hongqi Wu, Tiferet Gazit, Miltiadis Allamanis, and Marc
Brockschmidt. 2019. CodeSearchNet Challenge: Evaluating the State of Semantic
Code Search. ArXiv abs/1909.09436 (2019).

[16] Sam Leroux, Steven Bohez, Elias De Coninck, Tim Verbelen, Bert Vankeirsbilck,
Pieter Simoens, and Bart Dhoedt. 2017. The cascading neural network: building
the Internet of Smart Things. Knowledge and Information Systems (2017).

https://www.tabnine.com/
https://copilot.github.com/
https://aws.amazon.com/codewhisperer/
https://www.businessinsider.com/how-much-chatgpt-costs-openai-to-run-estimate-report-2023-4
https://www.businessinsider.com/how-much-chatgpt-costs-openai-to-run-estimate-report-2023-4
https://www.cursor.so/
https://www.cursor.so/
https://sites.google.com/view/stop-exit-controller
https://sites.google.com/view/stop-exit-controller
https://api.semanticscholar.org/CorpusID:211171605


ICSE ’24, April 14–20, 2024, Lisbon, Portugal Zhensu Sun, Xiaoning Du, Fu Song, Shangwen Wang, and Li Li

[17] Lei Li, Yankai Lin, Deli Chen, Shuhuai Ren, Peng Li, Jie Zhou, and Xu Sun.
2021. CascadeBERT: Accelerating Inference of Pre-trained Language Models
via Calibrated Complete Models Cascade. In Conference on Empirical Methods in
Natural Language Processing.

[18] Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov,
Chenghao Mou, Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, Qian Liu,
Evgenii Zheltonozhskii, Terry Yue Zhuo, Thomas Wang, Olivier Dehaene, Mishig
Davaadorj, Joel Lamy-Poirier, João Monteiro, Oleh Shliazhko, Nicolas Gontier,
Nicholas Meade, Armel Zebaze, Ming-Ho Yee, Logesh Kumar Umapathi, Jian Zhu,
Benjamin Lipkin, Muhtasham Oblokulov, Zhiruo Wang, Rudra Murthy, Jason
Stillerman, Siva Sankalp Patel, Dmitry Abulkhanov, Marco Zocca, Manan Dey,
Zhihan Zhang, Nour Fahmy, Urvashi Bhattacharyya, Wenhao Yu, Swayam Singh,
Sasha Luccioni, Paulo Villegas, Maxim Kunakov, Fedor Zhdanov, Manuel Romero,
Tony Lee, Nadav Timor, Jennifer Ding, Claire Schlesinger, Hailey Schoelkopf, Jan
Ebert, Tri Dao, Mayank Mishra, Alex Gu, Jennifer Robinson, Carolyn Jane Ander-
son, Brendan Dolan-Gavitt, Danish Contractor, Siva Reddy, Daniel Fried, Dzmitry
Bahdanau, Yacine Jernite, Carlos Muñoz Ferrandis, Sean Hughes, Thomas Wolf,
Arjun Guha, Leandro von Werra, and Harm de Vries. 2023. StarCoder: may the
source be with you! (2023). arXiv:2305.06161 [cs.CL]

[19] Yujia Li, David H. Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser,
Rémi Leblond, Tom, Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago,
Thomas Hubert, Peter Choy, Cyprien de, Masson d’Autume, Igor Babuschkin,
Xinyun Chen, Po-Sen Huang, Johannes Welbl, Sven Gowal, Alexey, Cherepanov,
James Molloy, Daniel Jaymin Mankowitz, Esme Sutherland Robson, Push-
meet Kohli, Nando de, Freitas, Koray Kavukcuoglu, and Oriol Vinyals. 2022.
Competition-level code generation with AlphaCode. Science 378 (2022), 1092 –
1097.

[20] Xianggen Liu, Lili Mou, Haotian Cui, Zhengdong Lu, and Sen Song. 2020. Finding
decision jumps in text classification. Neurocomputing (2020).

[21] Hussein Mozannar, Gagan Bansal, Adam Fourney, and Eric Horvitz. 2023. When
to Show a Suggestion? Integrating Human Feedback in AI-Assisted Program-
ming. ArXiv abs/2306.04930 (2023). https://api.semanticscholar.org/CorpusID:
259108906

[22] Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Haiquan Wang, Yingbo Zhou,
Silvio Savarese, and Caiming Xiong. 2022. CodeGen: An Open Large Language
Model for Code with Multi-Turn Program Synthesis.

[23] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya
Sutskever. 2019. Language Models are Unsupervised Multitask Learners.

[24] Rylan Schaeffer, Brando Miranda, and Oluwasanmi Koyejo. 2023. Are Emergent
Abilities of Large Language Models a Mirage? ArXiv abs/2304.15004 (2023).
https://api.semanticscholar.org/CorpusID:258418299

[25] Tal Schuster, Adam Fisch, Jai Gupta, Mostafa Dehghani, Dara Bahri, Vinh Quang
Tran, Yi Tay, and Donald Metzler. 2022. Confident Adaptive Language Modeling.
ArXiv abs/2207.07061 (2022).

[26] Bo Shen, Jiaxin Zhang, Taihong Chen, Daoguang Zan, Bing Geng, An Fu, Muhan
Zeng, Ailun Yu, Jichuan Ji, Jingyang Zhao, Yuenan Guo, and Qianxiang Wang.
2023. PanGu-Coder2: Boosting Large Language Models for Code with Ranking

Feedback. arXiv:2307.14936 [cs.CL]
[27] Jieke Shi, Zhou Yang, Hong Jin Kang, Bowen Xu, Junda He, and David Lo. 2023.

Towards Smaller, Faster, and Greener Language Models of Code. arXiv e-prints
(2023), arXiv–2309.

[28] Jieke Shi, Zhou Yang, Bowen Xu, Hong Jin Kang, and David Lo. 2022. Com-
pressing Pre-trained Models of Code into 3 MB. Proceedings of the 37th
IEEE/ACM International Conference on Automated Software Engineering (2022).
https://api.semanticscholar.org/CorpusID:251564126

[29] Zhensu Sun, Xiaoning Du, Fu Song, Shangwen Wang, Mingze Ni, and Li Li. 2023.
Don’t Complete It! Preventing Unhelpful Code Completion for Productive and
Sustainable Neural Code Completion Systems. arXiv:2209.05948 [cs.SE]

[30] Zhensu Sun, Li Li, Y. Liu, and Xiaoning Du. 2022. On the Importance of Building
High-quality Training Datasets for Neural Code Search. 2022 IEEE/ACM 44th
International Conference on Software Engineering (ICSE) (2022), 1609–1620.

[31] Surat Teerapittayanon, Bradley McDanel, and Hsiang-Tsung Kung. 2016.
BranchyNet: Fast inference via early exiting from deep neural networks. Interna-
tional Conference on Pattern Recognition (2016).

[32] Priyan Vaithilingam, Tianyi Zhang, and Elena L. Glassman. 2022. Expectation
vs. Experience: Evaluating the Usability of Code Generation Tools Powered by
Large Language Models. CHI Conference on Human Factors in Computing Systems
Extended Abstracts (2022).

[33] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In Proceedings of the Annual Conference on Neural Information Process-
ing Systems. 5998–6008.

[34] Yue Wang, Weishi Wang, Shafiq R. Joty, and Steven C. H. Hoi. 2021. CodeT5:
Identifier-aware Unified Pre-trained Encoder-Decoder Models for Code Un-
derstanding and Generation. ArXiv abs/2109.00859 (2021). https://api.
semanticscholar.org/CorpusID:237386541

[35] Ji Xin, Raphael Tang, Jaejun Lee, Yaoliang Yu, and Jimmy J. Lin. 2020. DeeBERT:
Dynamic Early Exiting for Accelerating BERT Inference. In Annual Meeting of
the Association for Computational Linguistics.

[36] Ji Xin, Raphael Tang, Yaoliang Yu, and Jimmy J. Lin. 2021. BERxiT: Early Exiting
for BERT with Better Fine-Tuning and Extension to Regression. In Conference of
the European Chapter of the Association for Computational Linguistics.

[37] Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shanshan Wang, Yufei Xue,
Zi-Yuan Wang, Lei Shen, Andi Wang, Yang Li, Teng Su, Zhilin Yang, and Jie
Tang. 2023. CodeGeeX: A Pre-Trained Model for Code Generation with Mul-
tilingual Evaluations on HumanEval-X. ArXiv abs/2303.17568 (2023). https:
//api.semanticscholar.org/CorpusID:257834177

[38] Wangchunshu Zhou, Canwen Xu, Tao Ge, Julian J. McAuley, Ke Xu, and Furu
Wei. 2020. BERT Loses Patience: Fast and Robust Inference with Early Exit. In
Proceedings of the Annual Conference on Neural Information Processing Systems
2020.

[39] Albert Ziegler, Eirini Kalliamvakou, Shawn Simister, Ganesh Sittampalam, X. Al-
ice Li, Andrew SC Rice, Devon Rifkin, and Edward Aftandilian. 2022. Productivity
assessment of neural code completion. Proceedings of the 6th ACM SIGPLAN
International Symposium on Machine Programming (2022).

https://arxiv.org/abs/2305.06161
https://api.semanticscholar.org/CorpusID:259108906
https://api.semanticscholar.org/CorpusID:259108906
https://api.semanticscholar.org/CorpusID:258418299
https://arxiv.org/abs/2307.14936
https://api.semanticscholar.org/CorpusID:251564126
https://arxiv.org/abs/2209.05948
https://api.semanticscholar.org/CorpusID:237386541
https://api.semanticscholar.org/CorpusID:237386541
https://api.semanticscholar.org/CorpusID:257834177
https://api.semanticscholar.org/CorpusID:257834177

	Abstract
	1 Introduction
	2 Background on Transformer-based Code completion
	3 Empirical Investigation
	3.1 IRQ 1: Number of Indispensable Layers
	3.2 IRQ2: Helpfulness of the Completion after Generating a Wrong Token

	4 Proposed Method
	4.1 Stop&Exit Controller for Dynamic Inference
	4.2 Training SEC
	4.3 The Generation Process of LCMs with SEC

	5 Experiment Setup
	5.1 Large Code Models
	5.2 Datasets
	5.3 Metrics
	5.4 Implementation Details

	6 Experimental Results
	6.1 ERQ1: Accuracy of SEC
	6.2 ERQ2: Computational Efficiency
	6.3 ERQ3: Quality of the Completions

	7 Related Work
	8 Threats to Validity
	9 Conclusion
	Acknowledgments
	References

