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Abstract—Recurrent neural network (RNN) has achieved great
success in processing sequential inputs for applications such as
automatic speech recognition, natural language processing and
machine translation. However, quality and reliability issues of
RNNs make them vulnerable to adversarial attacks and hinder
their deployment in real-world applications. In this paper, we
propose a quantitative analysis framework — DeepStellar—
to pave the way for effective quality and security analysis of
software systems powered by RNNs. DeepStellar is generic to
handle various RNN architectures, including LSTM and GRU,
scalable to work on industrial-grade RNN models, and extensible
to develop customized analyzers and tools. We demonstrated
that, with DeepStellar , users are able to design efficient test
generation tools, and develop effective adversarial sample detec-
tors. We tested the developed applications on three real RNN
models, including speech recognition and image classification.
DeepStellar outperforms existing approaches three hundred
times in generating defect-triggering tests and achieves 97%
accuracy in detecting adversarial attacks. A video demonstration
which shows the main features of DeepStellar is available at:
https://sites.google.com/view/deepstellar/tool-demo.

I. MOTIVATION

Over the past decades, we have witnessed the emergence

and rapid development of deep learning (DL). DL has been

successfully deployed in many real-life applications, including

face recognition, automatic speech recognition (ASR) and au-

tonomous driving, etc. However, due to the intrinsic vulnerabil-

ity and the lack of rigorous verification, DL systems suffer from

quality and security issues, such as the Alexa/Siri manipulation

and the autonomous car accidents, which are introduced from

both the development and deployment stages [1].

Due to the fundamentally different programming paradigm

and logic representation from traditional software, existing

quality assurance techniques can hardly be directly applied

to DL systems. Recently, significant research efforts have

been made on techniques specific to DL systems, including

testing [2], [3], [4], [5], [6], verification [7], and adversarial

sample detection [8]. The existing work mainly focus on the

Feed-forward Neural Networks (FNNs), leaving the Recurrent

Neural Networks (RNNs) untouched. FNNs are with a feed-

forward design and take an input as a monolithic piece; each

layer inside plays a fixed role in the feature extraction process.

In contrast, RNNs consume a sequential input segment by

segment and work in an iterative manner, as illustrated in

Fig. 1a. In each iteration, the RNN processes an individual

element, evolves into a new state, records and forwards the

state information to the next iteration. This key feature enables

RNNs to handle data rich in temporal information, such as

natural language texts, audios and videos. The fact that the roles

of layers are interchangeable, makes the quantitative analysis

of RNNs much more difficult, even to measure the behavioral

differences when processing two samples.

To bridge the gap, we propose a general-purpose quantitative

analysis framework, DeepStellar , which enables one to perform

effective security and quality analyses for RNN-based DL

systems. The core of DeepStellar is an abstraction of the

unique hidden state space of RNNs, which models the internal

behaviors of RNNs as Discrete-Time Markov Chain (DTMC).

DeepStellar is generic to handle various RNNs architectures,

including LSTM [9] and GRU [10], and extensible to de-

velop customized analyzers and testing tools for RNNs. To

demonstrate the effectiveness of DeepStellar , we developed an

efficient test generation tool and effective adversarial sample

detectors for RNNs, based on DeepStellar. We apply both

tools on three real RNN models, including ASR and image

classification, and observed promising results with hundreds of

times more adversarial samples generated, and 97% accuracy in

adversarial attack detection. DeepStellar facilitates developers,

users and researchers of RNN-based DL systems, allowing

them to have a better comprehension on the behaviors of

RNNs, define quantitative measures, and develop more useful

toolkit to make the systems more robust and secure.

II. THE DeepStellar FRAMEWORK

Fig. 1b shows an overview of DeepStellar , which includes

three components: the abstract model construction module, and

two applications – the adversarial sample detector (DeepStellar-

ASD) and coverage-guided testing tool (DeepStellar-CGT).

The abstraction module takes the target RNN and (a part of)

its training data as inputs, and constructs an abstract model.

DeepStellar provides APIs to access the state and transition

information from the abstract model, and the abstract trace

traversed by a sample. In this way, users are able to develop

customized analyzers and testing tools for RNNs by extending

DeepStellar , similar to DeepStellar-ASD and DeepStellar-CGT.

A. Abstract Model Construction

For an RNN, DeepStellar generates an abstract model (i.e.,

DTMC model) via three steps: 1) states and transitions profiling,

2) state abstraction, and 3) transition abstraction.

Step 1: Profiling. DeepStellar uses inputs from the training

data to perform the profiling, as they can manifest the

1062

2019 34th IEEE/ACM International Conference on Automated Software Engineering (ASE)

978-1-7281-2508-4/19/$31.00 ©2019 IEEE
DOI 10.1109/ASE.2019.00102



Si+1SiSi-1

RNNInput Output

state vector

x0 … xi-1 xi xi+1 …

y0 … yi-1 yi yi+1 …

Input:

Output:

S0

1

unroll

(a) A Simple RNN. (b) Overview of DeepStellar .

Fig. 1: Architecture of RNN and Overview of DeepStellar .

characteristics of a trained RNN model. Via executing the RNN

on an input, a trace consisting of state vectors is generated.

In this way, from the training data, we obtain a set of traces

recording the concrete states visited and the concrete transitions

taken during the training stage. Based on the concrete states and

transitions, we then perform the state and transition abstraction.

Step 2: State Abstraction. We first group all the concrete

state vectors and apply Principle Component Analysis (PCA)

to identify the first k principle components which distinguish

the vectors to the most extend. Then, we project the concrete

state vectors onto the k-dimensional component basis. This

is to reduce the dimension of the state space and improve

computation efficiency, since concrete state vectors may come

with very high dimension. Next, we perform an interval

abstraction by dividing each axis into m equal-length intervals,

and the k-dimensional space are split into mk regular grids [11].

Finally, we map concrete states falling into the same grid to the

same abstract state. Note that the precision of state abstraction

is configurable by the parameters (k, m).

Step 3: Transition Abstraction. We abstract the concrete

transitions based on the state abstraction. An abstract transition

represents a set of concrete transitions which share the

same source and destination abstract states. For each abstract

transition t, we calculate its transition probabilities by taking

the number of concrete transitions, that mapped to t, over the

number of all outgoing concrete transitions that share the same

source abstract state as t.

B. Applications
Based on the abstract model, we developed two applications

for 1) adversarial sample detection (DeepStellar-ASD), and 2)

coverage-guided testing (DeepStellar-CGT) of RNNs. Here,

we give a brief description about their designs and usage.
1) Adversarial Sample Detection: Adversarial samples are

able to fool RNNs with human-imperceptible perturbations. We

speculate that there exist some abnormal behaviors during the

process of predicting over the adversarial samples, compared

with benign samples. For example, when a perturbed panda
picture is recognized as a gorilla, the behavioral trace of

RNN is supposed to be different from that of a real gorilla,

because visible differences exists between these two pictures.

With DeepStellar, we can capture finer-grained behaviors of

RNNs and even to measure the differences between samples

with minor perturbations. Specifically, we designed two trace

similarity metrics, and developed an algorithm to detect

adversarial samples based on them.

Trace Similarity Metrics. The two similarity metrics (refer

to [12] for the detailed definitions) are from both the state and

transition levels, i.e., state-based trace similarity (SBTSIM) and

transition-based trace similarity (TBTSIM). They are derived

to compare the trace similarity between samples from the

Jaccard index of their abstract states or transitions covered.

Given two samples, we can leverage DeepStellar to get the

set of states or transitions covered by each, and calculate the

Jaccard index between the two sets.

Usage. DeepStellar-ASD takes a set of adversarial samples

and a (partial) set of testing data (highlighted with step 2 in

Fig. 1b) as inputs, and outputs a detector which checks whether

a given sample (step 3 ) is adversarial.

To check whether a given sample (step 3 ) is adversarial,

DeepStellar-ASD first generates reference samples which have

the same the prediction output as the target. The trace similarity

between the original sample and its reference samples are used

as an indicator to differentiate between benign and adversarial

samples. Basically, the similarity between a benign sample

and its references is larger than that of an adversarial sample.

For the panda as gorilla example, its reference samples are

all gorilla, thus the similarity would be much larger than that

between gorilla pictures. For the image classification task, we

get 50 reference samples from the training data based on the

label of the original sample. For the ASR models, we use off-

the-shelf text-to-speech engines to generate a standard audio

from the transcript of the original sample.

2) Coverage-Guided Testing: With the profiling of samples

from training data, DeepStellar is able to capture the major

behavioral space and transitions in normal cases. The objective

of testing is to systematically generate test cases, which may

also explore regions outside the major behavioral space. We

derive a set of coverage criteria to facilitate the guided testing

1063



TABLE I: Studied subject model information.

Subject Model
Kernel RNN # Traina. Acc. (%)

Type State vec. shape Param. Train. Test.

DeepSpeech 0.1.1 Bi-LSTM (None, 4096) 122x106 - -
MNIST-LSTM LSTM (None, 128) 81,674 99.69 98.66
MNIST-GRU GRU (None, 128) 61,578 99.70 98.61

of RNNs, with the aim to improve the testing dataset adequacy

and uncover more defects.

Coverage Criteria. For the coverage criteria, basic state
coverage (BSCOV), weighted state coverage (WSCOV), basic
transition coverage (BTCOV) and weighted transition coverage
(WTCOV) are designed to quantify the portion (or weighted

portion considering the visiting probabilities) of abstract

states/transitions visited by any test dataset. They indicate

how adequately the internal states/transitions are exercised.

Usage. DeepStellar-CGT begins with a set of initial seeds

(step 4 in Fig. 1b), and returns a set of augmented test data

and a group of adversarial samples discovered. Firstly, the

initial seed data are put into a seed queue, then DeepStellar-

CGT iterates to increase a chosen coverage criteria of the seed

queue with sample mutation and selection. In each iteration,

we select a seed from the queue and generate a series of

mutants. Mutation strategies to augment the test data are

designed for image, natural language, and audio, respectively.

The mutation follows metamorphic relations such that the

perturbations applied are minor and would not change the truth

label. For the newly generated samples, if they are adversarial,

we keep them in the adversarial sample group. Otherwise,

we check their contribution to the specific coverage criteria,

and retain the test cases that cover new states or transitions.

DeepStellar-CGT iteratively continues the above steps until

the given time budget exhausts.

III. IMPLEMENTATION AND FEATURES

We have implemented DeepStellar in Python based on Keras-

2.2.4 and TensorFlow-1.11. Its command line interface provides

three key features: (1) RNN abstract model construction, (2)

RNN adversary example detection, and (3) RNN coverage-

guided testing. These features can help end users to perform

the quality and security analysis of RNN directly. Furthermore,

DeepStellar provides a comprehensive set of APIs to assist

further application development for RNN analysis: (1) APIs for

retrieving the detailed information of the abstract model, and

(2) APIs to visualize the runtime traces of RNN predictions.

To validate the practical value of DeepStellar, we applied

DeepStellar-ASD on detecting adversarial samples generated

by state-of-the-art attack techniques. We further applied Deep-
Stellar-CGT on image classification RNN models trained

with MNIST dataset, and generated a number of adversarial

samples effectively. The results demonstrate that DeepStellar
is useful on revealing and evaluating the defects of RNN-based

DL systems. With these engineering efforts and experimental

results, we believe that DeepStellar is scalable and effective

in attacking and defending real-world RNNs.

TABLE II: AUROC results (%) of trace similarity based

adversarial detection by configurations.

Config. DeepSpeech-0.1.1 MNIST-LSTM

(k, m) STSIM TTSIM
FSGM BIM DeepFool

STSIM TTSIM STSIM TTSIM STSIM TTSIM

(2, 40) 81.00 50.00 79.95 88.01 77.9 80.77 76.82 81.86
(2, 80) 70.25 50.00 90.54 96.55 82.38 92.12 84.43 92.46
(3, 5) 69.41 85.40 86.95 85.31 84.71 83.25 82.42 80.15
(3, 10) 89.26 85.19 90.05 89.74 86.18 85.28 85.23 83.78
(3, 20) 85.25 50.00 89.4 92.62 84.63 84.72 83.53 85.46
(3, 40) 50.49 50.00 90.56 93.79 85.97 86.62 84.05 87.47
(3, 80) 50.00 50.00 96.63 93.64 92.97 89.75 93.44 90.43

IV. EVALUATION

We demonstrate the usefulness of the DeepStellar applica-

tions, on three RNNs from domains of speech recognition and

image classification. Details of the subject models can be found

in Table I. The ASR model used is Mozilla’s implementation of

DeepSpeech 0.1.1, which is of industrial-level performance. For

image classification, we trained two RNNs with the LSTM and

GRU architectures over the MNIST dataset, respectively. Both

models achieve over 98% test accuracy. They covered different

RNN architectures including LSTM, bidirectional LSTM and

GRU. The largest model, DeepSpeech 0.1.1, contains over

one hundred millions of trainable parameters, and the state

vectors are in 4,096 dimensions. In addition, we evaluated

the usefulness of the proposed quantitative measures on

two application tasks, namely detecting adversarial examples

and coverage guided testing for RNNs. More details on the

experiment setup and results can be found in [12].

(1) Adversarial Sample Detection. Adversarial samples for

each model are generated with state-of-the-art attack methods.

We use the C&W audio attack [13] to generate adversarial au-

dios for DeepSpeech 0.1.1, and use FGSM, BIM and DeepFool
to generate adversarial samples for image classification models.

For each RNN, we generate 13 abstract models under multi-

grained (k, m) abstraction configurations. Finally, for each

attack method, we generated 5,000 adversarial samples and

randomly select the same number of benign samples. With these

samples, we separately sampled the SBTSIM and TBTSIM

measures, and trained a linear regression classifier for detecting

adversarial examples. We show several AUROC results in

Table II for two RNNs – DeepSpeech 0.1.1 and MNIST-LSTM,

and the best detection accuracy hits 89% and 97%. The results

demonstrate that models with different abstractions can achieve

different detection accuracy. DeepStellar is useful on detecting

adversarial examples by selecting suitable abstract models.

(2) Coverage-guided Testing. We evaluated the usefulness

of DeepStellar-CGT on coverage increase and the number of

adversarial examples with the BSCov guidance and BTCov

guidance. We selected the abstract model with the configuration

(k=3, m=10). Results for the MNIST models are shown in

Table III. For each coverage guidance, we analyze the coverage

increase on all testing criteria (ı.e., the first column). Column

“Seed” shows the initial coverage from the initial seeds. The

coverage results from state- and transition- coverage guidance
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TABLE III: Results of coverage and unique adversarial samples

by different testing strategies.

Criteria (%) MNIST-LSTM MNIST-GRU

/Adv (#) Seed S-Guid. T-Guid. Ran. DeepT. Seed S-Guid. T-Guid. Ran. DeepT.

BSCov 54.59 97.78 97.78 86.23 65.35 63.20 95.87 96.04 88.78 68.98
WSCov 96.44 99.99 99.99 99.66 98.04 97.03 99.98 99.98 99.80 98.05
BTCov 15.13 53.43 96.43 73.88 26.23 14.42 42.80 93.89 71.82 21.32
WTCov 77.80 94.81 99.90 98.02 85.12 63.40 88.78 99.69 96.95 72.34

#Unique Adv. - 87,596 41,614 2,219 300 - 69,777 35,228 19,738 244

are shown under Column “S-Guid.” and “T-Guid.”, respectively.

For comparison, we included a random testing without coverage

guidance (Column “Ran.”) and an existing neuron coverage

guided testing tool for RNN based on unrolling [3] (Column

“DeepT.”). We can see that DeepStellar-CGT outperforms all the

baseline approaches on both the coverage criteria increase and

the generation of adversarial samples. Specifically, DeepStellar-

CGT discovers 3 to 40 times more adversarial samples than

random testing, and around 300 times more than DeepTest.

V. RELATED WORK

Abstraction of RNN. There exist some pioneer studies on the

abstraction techniques for RNNs, but they mostly used Finite

State Automaton (FSA) to capture RNNs’ internal dynamics,

which lacks the transition probability distributions as in DTMC.

In the literature, the existing studies are mostly concerned

with the strategy for the internal state space partition, which

is one of the most important techniques in the abstraction.

Proposed partitioning strategies include equal division of each

dimension for regular grids [11], unsupervised classification

algorithms such as k-means and its variants [14], [15] and

dynamic partition schemes with kernel algorithms [7]. However,

they all suffer from the scalability problem when applied to real-

world RNNs where the internal state space can be extremely

large and in high dimension. Instead, DeepStellar employs

PCA for a much cheaper abstraction.

RNN Adversarial Example Detection. Adversarial example

detection for RNNs is still at an early stage. Techniques [8],

[16], [17] specially designed for feedforward nerual networks

cannot be applied to RNNs. The softmax probability based

approach [16] could possibly be used to detect RNN adversarial

examples for classification problem only. As far as we know,

DeepStellar-ASD is the first tool specifically designed to detect

adversarial samples for RNNs with sequential output.

Deep Learning Testing. Recently, DNN testing has been

widely studied including the study on testing criteria [2], [4]

and testing tool [2], [3], [5], [6], [18]. However, most of them

mainly focus on feed forward neuron networks. DeepTest [3]

can be used on RNNs by unrolling. However, it unrolls the

RNN with fixed iterations and is not scalable. TensorFuzz [18]

can be used on RNN as it only considers the output of the

logits layer. However, it lacks internal analysis of the RNNs.

VI. CONCLUSION AND FUTURE WORK

DeepStellar provides a fundamental infrastructure supporting

versatile analyses of RNNs. We demonstrate two typical

applications of DeepStellar with a test generation tool and

adversarial sample detector. For future work, we intend to

augment the abstraction with transition labels, i.e., the input

triggering a transition, and abstraction techniques can handle

inputs from continuous space. We are also interested in

investigating what and how critical properties can be verified

over the abstract model to unveil deeply buried defects in RNNs.
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