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ABSTRACT
Deep learning (DL) models are trained on sampled data, where
the distribution of training data differs from that of real-world
data (i.e., the distribution shift), which reduces the model’s robust-
ness. Various testing techniques have been proposed, including
distribution-unaware and distribution-aware methods. However,
distribution-unaware testing lacks effectiveness by not explicitly
considering the distribution of test cases and may generate redun-
dant errors (within same distribution). Distribution-aware testing
techniques primarily focus on generating test cases that follow the
training distribution, missing out-of-distribution data that may also
be valid and should be considered in the testing process.

In this paper, we propose a novel distribution-guided approach
for generating valid test cases with diverse distributions, which
can better evaluate the model’s robustness (i.e., generating hard-to-
detect errors) and enhance the model’s robustness (i.e., enriching
training data). Unlike existing testing techniques that optimize in-
dividual test cases, DistXplore optimizes test suites that represent
specific distributions. To evaluate and enhance the model’s robust-
ness, we design two metrics: distribution difference, which maxi-
mizes the similarity in distribution between two different classes
of data to generate hard-to-detect errors, and distribution diversity,
which increase the distribution diversity of generated test cases for
enhancing the model’s robustness. To evaluate the effectiveness
of DistXplore in model evaluation and enhancement, we compare
DistXplore with 14 state-of-the-art baselines on 10 models across
4 datasets. The evaluation results show that DistXplore not only
detects a larger number of errors (e.g., 2×+ on average), but also
identifies more hard-to-detect errors (e.g., 10.5%+ on average); Fur-
thermore, DistXplore achieves a higher improvement in empirical
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robustness (e.g., 5.2% more accuracy improvement than the base-
lines on average).
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1 INTRODUCTION
Deep learning (DL) has achieved great success in many applica-
tions such as autonomous driving [42], healthcare [47], face recog-
nition [18] and speech recognition [68]. It is widely known that
DL models suffer from the issue of poor robustness, making them
vulnerable to adversarial attacks. Therefore, it is crucial to systemati-
cally test DL systems before deployment, especially in safety-critical
scenarios.

Machine learning (ML) involves the process of learning a model
from sampled data (i.e., training data) to make decisions on a spe-
cific task. The general steps of ML tasks include data collection,
model training, model evaluation, and model deployment. Due to
the huge input space, it is impossible to collect all data for train-
ing, thus, high-quality data that follows a certain distribution is
collected for training. As shown in Fig. 1, for a specific task (e.g.,
digit classification), there is a vast amount of task-relevant data
for digits (i.e., the valid data shown in the dashed rectangle) in the
whole input space (i.e., all data shown in the solid rectangle). The
task-irrelevant data (e.g., noisy data and non-digit data) is referred
to as invalid data (e.g., the dataset f in Fig. 1) with respect to the
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Figure 1: Data sampling and an illustrative example of DL system

given task. A small subset of the valid data (e.g., the dataset a and b
in Fig. 1) is collected for training the model. However, the training
distribution is often different from the distribution of valid data
(due to the distribution shift), which greatly affects the model’s ro-
bustness. A fundamental assumption is that the model is intended
to handle the in-distribution data (ID) that follows the distribution
of training data [4], but it is hard to correctly predict data (e.g.,
the dataset c, d, and e in Fig. 1) that does not follow the training
distribution, i.e., out-of-distribution data (OOD), which highlights
the need for testing before deployment.

DL testing aims to generate test cases that evaluate the robustness
of DL systems, i.e., discover the data that is valid but cannot be
predicted correctly (e.g., the dataset d and e in Fig. 1), and enhance
the robustness, i.e., retraining model by including test cases data
with diverse distribution (dataset c, d, and e in Fig. 1). Many studies
have been conducted for testing DL systems [9, 22, 46, 54, 57, 63],
where validity and distribution are two important properties of test
cases. A common approach to guarantee validity is to constrain the
degree of the mutation (e.g., the distance between the new test and
the original seed is constrained within a 𝐿𝑝 ball). However, existing
methods (e.g., DeepTest [54], DeepHunter [63], and TensorFuzz [43])
often ignore the distribution [4, 9], which limits their effectiveness
in evaluation and enhancement (e.g., redundant errors within the
similar distribution are generated). Recently, some studies [4, 9, 22,
55] have attempted to address this by incorporating distribution-
aware testing, which characterizes the training distribution via
Variational Auto-Encoder (VAE) or Generative Adversarial Network
(GAN). However, these methods only generate ID data while OOD
data is considered as “invalid”. We argue that the OOD data is just
data that does not follow the distribution of the collected training
data but could still be valid and should be handled properly in real-
world deployment environment. For example, as shown in Fig. 2,
for each dataset, the input on the right side in a row is mutated
from its left-side sample, the inputs on the right are considered
as “invalid” data by existing distribution-aware testing [9]. These
data could still be visually valid, even though they are identified as
"invalid" data by VAE [9]. For example, although the distribution of
the images in Out-of-Distribution Data (Valid) in Fig. 1 is different
from the distribution of the training data (e.g., the digits written
in very different ways), they could still be the potential inputs to
the deployed DL systems. Therefore, it is crucial to test both in-
distribution (ID) and out-of-distribution (OOD) data that are valid
before deploying the DL system.

The quality of test cases depends on the testing goals, i.e., what
kind of data is more useful in robustness evaluation and enhance-
ment in this paper. For evaluating model’s robustness, although
OOD data is likely to trigger incorrect decisions of the model, they

SVHN MNIST Fashion MNIST

Figure 2: Examples of OOD data that are considered as invalid by [9].
Left: original inputs, Right: generated inputs

could also be easily detected by OOD detection methods. For exam-
ple, state-of-the-art testing techniques can easily generate a large
number of errors (e.g., thousands of errors in [46, 63]), but most of
them tend to be weak errors that can be detected or filtered by ex-
isting defense techniques (e.g., adversarial example detection [58]).
It is similar to traditional software testing, where defenses such as
parsers and exception handling can filter out weak errors. Thus, for
DL testing, it is important and challenging to discover strong errors
that can evade the state-of-the-art defenses. For model enhance-
ment, the general goal is to reduce the distribution shift between
the training data and real-world data. Hence, how to generate tests
with diverse distributions (e.g., covering 𝑐 , 𝑑 , 𝑒) is another challenge.
These diverse tests can be added to the training data for improving
the model generalizability and robustness.

To this end, in this paper, we propose a novel distribution-guided
testing framework (named DistXplore) for better evaluating and
enhancing DL systems, i.e., to generate hard-to-detect and diverse
errors. DistXplore adopts the search-based approach to adaptively
generate test cases with the guidance of distribution. Unlike existing
techniques that optimize test cases individuality, the optimization
of DistXplore is performed on a test suite that represents a specific
distribution. Specifically, we leverage Maximum Mean Discrepancy
(MMD) [13] to measure the closeness between two distributions. For
model evaluation, DistXplore maximizes the distribution closeness
between the data in two different classes for generating statistically
indistinguishable errors, which are difficult to defend. To enhance
the model’s robustness, we propose a metric to measure the distri-
bution diversity of the test cases, guiding DistXplore to generate
test suites with various distributions. The test cases with diverse
distributions are more likely to cover a wider range of unseen data
and improve the model’s robustness.

We conduct a comprehensive evaluation to demonstrate the
usefulness and the effectiveness of DistXplore in evaluating and
enhancing the model’s robustness. Specifically, we select 10 mod-
els on 4 datasets, and compare DistXplore with 14 state-of-the-art
tools covering 4 different types of techniques (i.e., adversarial at-
tacks, distribution-unaware testing, distribution-aware testing, and
robustness-oriented testing). The results demonstrate that 1) the
statistically indistinguishable errors generated by DistXplore are
harder to detect by two state-of-the-art defense techniques, e.g.,
the attack-as-defense [69] can only detect 66% errors generated
by DistXplore, but almost 100% errors from adversarial attacks and
distribution-aware testing. 2) DistXplore is more efficient in detect-
ing errors, e.g., on average it detects 2×+ errors compared to the
best baseline. 3) The test cases generated by DistXplore are more
useful in improving the model’s robustness, e.g., 5.2%more accuracy
improvement than the baselines on average.

To summarize, this paper makes the following contributions:

• We first discuss the limitation of existing distribution-aware and
distribution-unaware testing techniques in terms of validity and
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Figure 3: Illustration of test suite generation

distribution. Then we propose a novel distribution-guided testing
technique for generating hard-to-detect errors and diverse data
covering a wider range of unseen data. To the best of our knowl-
edge, this is the first distribution-guided testing for generating
test suites with diverse distributions.

• Technically, we design two distribution-based metrics (i.e., distri-
bution difference and distribution diversity) to guide the testing
for generating statistically indistinguishable errors and test cases
with diverse distributions, respectively.

• Wedemonstrate the usefulness ofDistXplore in discovering strong
errors and enhancing model’s robustness by comparing it with
14 state-of-the-art methods.

2 PRELIMINARY AND OVERVIEW
2.1 Preliminary
2.1.1 Deep Neural Network. A Deep Neural Network (DNN) can
be represented as a function 𝑓 : 𝑋 → 𝑌 that maps an 𝑛-dimensional
input 𝑥 ∈ 𝑋 to an𝑚-dimensional output 𝑦 ∈ 𝑌 . A DNN usually is
the composition of layers denoted as 𝑓 = 𝑙0 ◦ 𝑙1 ◦ . . . ◦ 𝑙𝑘 . We use
𝑓𝑖 (𝑥) to represent the output of the 𝑖𝑡ℎ layer, where 𝑓0 (𝑥) = 𝑥 and
𝑓𝑘 (𝑥) = 𝑦. For example, the output𝑦 in classification is a probability
vector for𝑚 possible classes (e.g., 10 classes in CIFAR-10).

2.1.2 Data Validity. Let 𝑋 be the whole input space with 𝑛 di-
mensions (i.e., R𝑛). We use 𝑍 to denote all possible inputs that are
relevant to the given task (e.g., all images of digits 0-9). 𝑍 is con-
sidered as valid data with respect to the task as they could be the
potential inputs when the trained model is deployed in real-world.
The inputs 𝑋\𝑍 : {𝑥 : 𝑥 ∈ 𝑋 ∧𝑥 ∉ 𝑍 } are invalid data, e.g., the data
of other tasks and low-quality data. It is difficult to precisely define
the validity of the data. In practice, the 𝐿𝑝 norm [40] is usually
used to guarantee the validity of the generated data by the existing
DL testing and adversarial attack techniques. Specifically, given
a valid input 𝑥 , the new test case 𝑥 ′ generated by adding some
perturbations on 𝑥 is considered as valid if | |𝑥 ′ − 𝑥 | |𝑝 < 𝑑 , where 𝑑
is a safe radius.

2.1.3 Data Distribution. Since valid inputs 𝑍 can be infinite, it is
not possible to collect all of them for training. In practice, a DNN
𝑓 is usually trained from collected data 𝑇 (i.e., training data) that
follows a distribution D𝑇 , called in-distribution (ID) data. Some
generative models such as variational autoencoders (VAE) [30] and
generative adversarial networks (GAN) [9] are used to approximate
the ID data distribution [22].

There is often a distribution shift between D𝑍 and D𝑇 (i.e., the
training data cannot represent the real-world data), making that the

model underperforms on the out-of-distribution (OOD) data. Hence,
test cases with diverse distributions are more likely to reveal the
weaknesses of the model. On the other hand, the OOD test cases can
enrich the training data such that the distribution of new training
dataset is closer to the distribution of training data.

Note that the validity and the out-of-distribution of the data are
different in this paper. The valid data is any potential inputs of the
model with respect to the task, and is usually of high quality. The
out-of-distribution data refers to the data that does not follow the
distribution of specific training data. The valid data can be ID or
OOD, depending on the training data collected. The OOD data can
also be valid or invalid, depending on the relevance and quality
of the data. To measure the validity, we adopt the widely used
measurement, i.e., 𝐿𝑝 norm. To measure the distribution difference,
we adopt the metric Maximum Mean Discrepancy defined below.

2.1.4 Maximum Mean Discrepancy. Maximum Mean Discrepancy
(MMD) is a common test statistic to measure the closeness between
two sets of samples drawn from two distributions. Assume we
have two sets of samples 𝑋 = {𝑥1, . . . , 𝑥𝑚} and 𝑌 = {𝑦1, . . . , 𝑦𝑛}
drawn from two distributions D𝑋 and D𝑌 , MMD calculates the
distance between the two sets of samples in a universal reproducing
kernel Hilbert space (RKHS) [51]. The empirical estimation of MMD
between the two distributions in RKHS, denoted as 𝑀𝑀𝐷 (𝑋,𝑌 ),
can be calculated as:

1
𝑚2

𝑚∑︁
𝑖, 𝑗=1

𝑘 (𝑥𝑖 , 𝑥 𝑗 ) −
2
𝑚𝑛

𝑚,𝑛∑︁
𝑖, 𝑗=1

𝑘 (𝑥𝑖 , 𝑦 𝑗 ) +
1
𝑛2

𝑛∑︁
𝑖, 𝑗=1

𝑘 (𝑦𝑖 , 𝑦 𝑗 )

where k is a measurable and bounded kernel of a RKHS, MMD is
zero if and only if D𝑋 = D𝑌 . As mentioned in [44] that Gauss-
ian and Laplace kernels are universal, we use Gasussian kernel to
calculate MMD. More details about MMD can refer to [14].

2.2 Overview of DistXplore
Fig. 3 shows the main idea of our approach. We mainly consider
classification task in this paper. Specifically, DistXplore considers
the data distribution in each class separately, i.e., to generate test
cases with diverse distributions for each class. To measure the dis-
tribution diversity of the test cases, we calculate the distribution
difference (i.e., MMD) between the test suite from a class and the
training data in each of other classes, and then measure the di-
versity of these distribution differences. We consider distribution
differences between test cases and the data in different classes, since
each input may be classified into any class by a model, representing
the different decision behaviors of the model. Therefore, we aim to
generate diverse test cases by considering the diversity of distribu-
tion differences between the generated test cases and training data
of different classes.

As shown in Fig. 3, given the initial test suite sampled from the
training data of a class, which represents the training distribution of
the class, the goal is to generate new test suites that have different
distribution distances with the training data in other classes (e.g.,
class 1, 2, 3). The distribution curve of the test suites (i.e., red curve)
shifts from the original distribution (i.e., blue curve) to the target
distribution (i.e., green or orange curve), thus DistXplore generates
test suites that are more likely to be predicted incorrectly. For
robustness evaluation, the goal is to generate errors that are hard to
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Figure 4: Diversity of data distribution on MNIST

detect. The more similar the distribution of the test suite (e.g., class
0) is to the distribution of the training data in the target class (e.g.,
class 1), the harder it is to detect the errors, because the errors are
statistically indistinguishable from the target class. For robustness
enhancement, DistXplore is used to generate test suites with diverse
distributions (instead of only hard-to-defend errors) that can enrich
the training data by adding unseen data, thus improving the model’s
robustness.

3 DISTRIBUTION-GUIDED TESTING
3.1 Testing Goals
In this paper, we mainly focus on two objectives: model evaluation
and enhancement. We design the objective functions that guide the
test case generation, i.e., optimize test suites.

3.1.1 Model Evaluation. To evaluate the model’s robustness, we
aim to generate the erroneous inputs that are hard to be detected
by existing defense techniques. Specifically, just as any dataset can
follow a specific distribution, the data within individual classes in
classification tasks also possess their own distribution. Due to the
differences between these different classes, their data distributions
are also very different (e.g., dogs and birds). A well-trained model is
capable of accurately distinguishing the differences between these
classes. In Fig. 4, the blue areas represent the different distributions
of data for different classes in the MNIST dataset. Conversely, if the
data distributions between two classes are very similar, the model
may struggle to make accurate predictions. Thus, DistXplore aims
to generate test cases (in a class) that are statistically similar to the
training data in other classes.

Formally, given a DNN 𝑓 and a test suite 𝑆𝑐 belonging to a
source class 𝑐 , we define its distribution difference with respect to
the training data (𝑇𝑐′ ) in another target class 𝑐′ as:

𝐷𝐹𝑓 (𝑆𝑐 , 𝑐′) = 𝑀𝑀𝐷 (𝑓𝑙 (𝑆𝑐 ), 𝑓𝑙 (𝑇𝑐′ ))

where 𝑓𝑙 refers to the output of the layer 𝑙 and 𝑐′ ≠ 𝑐 .
The distribution difference is measured on a specific layer of

the DNN. In this paper, we select the logits layer, i.e., the layer
before the softmax layer, which is frequently used in previous
works [26, 31, 70]. Intuitively, the smaller the value 𝐷𝐹𝑓 (𝑆𝑐 , 𝑐′), the
more difficult it is for the model 𝑓 to distinguish 𝑆𝑐 and 𝑇𝑐′ . Hence,
it is more likely to generate undetectable errors by minimizing their
distribution difference.

3.1.2 Model Enhancement. The model’s robustness can be im-
proved if the distribution of training data (𝑇 ) is closer to the distri-
bution of real-world valid data (𝑍 ), i.e., to add more unseen valid
data to training data. However, it is impossible to directly collect

all real-world data. Therefore, we could adjust the objective to
generate data that is as diverse as possible, aiming to make the
distribution of the generated data more closely resemble that of
real-world valid data (𝑍 ). To provide a easy understanding of the
fundamental concept behind generating diverse data to enhance
model’s robustness, we conducted a qualitative analysis, as de-
picted in Fig. 4. In this visualization, we show the distribution of
training data (represented in blue) and the distributions of specific
errors generated by different types of tools: adversarial attack tool
(PGD [37]), distribution-unaware testing tool (DeepHunter [63]),
distribution-aware testing tool (VAE [55]), and DistXplore. Addition-
ally, we include some real-world data examples, which represent a
wide range of possible data samples.

The results of this analysis highlight two key observations: 1) the
model is not robust due to the distribution shift between the training
data and real-world data. By utilizing various tools, we can generate
valid OOD data that helps reduce the distribution shift, and further
enhance the robustness by incorporating previously unknown data
into the training set. 2) The erroneous inputs generated by existing
tools exhibit limited diversity, while DistXplore aims to generate
test cases with diverse distributions, such that the distribution of
the generated data could be closer to real-world data distribution.

We propose a metric to measure the distribution diversity of
test suites, which can guide the generaton of diverse data. Given
a DNN 𝑓 that performs the classification on𝑚 classes (denoted as
𝐶𝑓 ), and a set of test suites𝑇𝑆𝑐 in a class 𝑐 , the distribution diversity
is defined as:

𝐷𝑖𝑣 (𝑇𝑆𝑐 ) =
∑
𝑐′∈𝐶𝑓 \𝑐 |{B(𝐷𝐹𝑓 (𝑆, 𝑐′)) |∀𝑆 ∈ 𝑇𝑆𝑐 )}|

|𝐶𝑓 \𝑐 | · 𝑘

where 𝐶𝑓 \𝑐 represents the other classes except 𝑐 , B is an interval
abstraction function that maps a concrete MMD value to an interval,
and 𝑘 is the number of intervals between 𝑐 and each of other classes.

The basic idea is to measure the diversity of distribution dif-
ferences between the current test suites and the training data of
other classes. Since the difference between two distributions (i.e.,
MMD) is a continuous variable, we adopt the interval abstraction to
spilt its values into 𝑘 intervals (i.e., 𝑘 distributions). The numerator
and the denominator represent the number of intervals covered
and the total number of intervals between the current class 𝑐 and
other classes, respectively. As shown in Fig. 3, the distribution ade-
quacy is measured from two perspectives: 1) Distribution Difference
Diversity: for a given target class 𝑐′, multiple intervals between
the test suites and the training data of 𝑐′ can be covered. 2) Target
Class Diversity: multiple classes (i.e., 𝐶𝑓 \𝑐) are used to guide the
test generation, which allows to consider the relationships between
every two classes.

Intuitively, the test suites in multiple intervals have different
distributions. To enhance the model’s robustness, the training data
should cover the distributions as many as possible, i.e., to increase
the distribution diversity. Note that, only using the strong errors
(i.e., undetectable) is not sufficient to improve the whole robustness
as it cannot handle errors with different distributions (see the results
in Section 4). In Fig. 3, the generated test suites (i.e., Test suite 1, 2,
3, 4) have diverse distributions (i.e., different red curves), and are
added into the training data for retraining.
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We select the classes in the same task as targets because the
classification is based on their relationships, i.e., to choose a rela-
tively suitable class (with higher probability). These targets may be
incomplete in terms of characterizing the distribution diversity. We
can also select other targets to guide the test generation such as the
classes in other tasks as long as the generated tests are valid. For
example, we can select the classes in CIFAR-10 or Roman numerals
as the targets of MNIST task. We plan to evaluate the effects of
more different targets in the future work.

3.2 Distribution-Guided Test Generation
To achieve both testing goals, we use a genetic algorithm (GA) to
solve the problem. Without loss of generality, the objective function
can be defined as 𝐷𝐹𝑓 (𝑆𝑐 , 𝑐′) ≈ 𝑣 (i.e., to decrease 𝐷𝐹𝑓 (𝑆𝑐 , 𝑐′) until
it is close to a small value 𝑣), where 𝑆𝑐 is the test suite belonging
to 𝑐 , 𝑐′ is a target class and 𝑣 is a constant value. For the goal of
model evaluation, 𝑣 is set as 0, i.e., to generate 𝑆𝑐 that is statisti-
cally indistinguishable from the training data in 𝑐′. For the goal
of model enhancement, DistXplore generates test suites that cover
more diverse intervals. Consider a target interval [𝑣0, 𝑣1] that we
aim to cover, the objective function is defined as 𝐷𝐹𝑓 (𝑆𝑐 , 𝑐′) ≈ 𝑣 ,
where 𝑣 ∈ [𝑣0, 𝑣1] can be any value within the range. The general
objective function can be:

argmin
𝑆𝑐

|𝐷𝐹𝑓 (𝑆𝑐 , 𝑐′) − 𝑣 |

Algorithm 1 shows the search-based method to solve the objec-
tive function. The inputs include the DNN 𝑓 , a seed test suite 𝑆𝑐
from class 𝑐 , a target class 𝑐′ (𝑐′ ≠ 𝑐) and the target distribution dif-
ference 𝑣 . The output is the new test suite that can reach the target
distribution difference. The seed test suite can be collected from
training dataset or testing dataset. We first construct a population
that contains𝑚 test suites (Line 1-3) by mutating the seed test suite
𝑚 times. Note that the chromosome is a test suite (including mul-
tiple inputs) instead of a single input. It repeatedly optimizes the
population (Line 4-16) for minimizing the distribution difference. In
each iteration, we first calculate the fitnesses of the updated popula-
tion (Line 6). Then we update the new population with the standard
crossover and mutation. If the best chromosome 𝑆 in the population
satisfies the objective or timeout, then the optimization process
terminates (Line 9-10). The distribution difference decreases during
optimization until it is less than a pre-defined value 𝜖 . For example,
𝜖 = 0 indicates that 𝐷𝐹𝑓 (𝑆, 𝑐′) is equal to 𝑣 . Note that 𝐷𝐹𝑓 (𝑆, 𝑐′) is
decreasing for the two test goals, because the distribution of the
initial test suite is often far from the distribution of the training
data in the target class 𝑐′.

We keep the chromosome that has the best fitness unchanged
(i.e., no crossover or mutation) to ensure that the optimization does
not get worse (Line 11). For others, we first select two chromosomes
based on the tournament strategy [39] (Line 13- 14). A uniform
crossover is performed between the selected two chromosomes
in the input level, i.e., genes in a chromosome are inputs of the
model 𝑓 (Line 15). Each gene in the chromosome 𝑆 can be selected
to mutate with a selection probability 𝑟 (Line 16).

In this paper, we mainly focus on image classification tasks. Dis-
tXplore can be easily extended to other domains. We select the di-
verse image transformations (e.g., translation, rotation, brightness)

Algorithm 1: Test generation
Input : 𝑓 : the target DNN, 𝑆𝑐 : a seed test suite from class 𝑐 , 𝑐′:

the target class, 𝑣: target distribution difference
Output :𝑆 ′𝑐 : the new test suite
Const :𝑚: population size, 𝑡 : tournament size, 𝑟 : mutation rate

1 𝑃𝑜𝑝 := ∅;
2 for 𝑖 ∈ [0,𝑚) do
3 𝑃𝑜𝑝 := 𝑃𝑜𝑝

⋃
𝑚𝑢𝑡𝑎𝑡𝑒_𝑒𝑎𝑐ℎ (𝑆𝑐 ) ;

4 while True do
5 for 𝑆 ∈ 𝑃𝑜𝑝 do
6 𝑓 𝑖𝑡𝑆 = 𝐷𝐹𝑓 (𝑆, 𝑐′ ) − 𝑣;

7 for 𝑆 ∈ 𝑃𝑜𝑝 do
8 if ∀𝑂 ∈ 𝑃𝑜𝑝.𝑓 𝑖𝑡𝑆 ≤ 𝑓 𝑖𝑡𝑂 then
9 if 𝑓 𝑖𝑡𝑆 ≤ 𝜖 or timeout then
10 return S;

11 continue;

12 else
13 𝑆1 := 𝑡𝑜𝑢𝑟_𝑠𝑒𝑙𝑒𝑐𝑡 (𝑃𝑜𝑝, 𝑡 ) ;
14 𝑆2 := 𝑡𝑜𝑢𝑟_𝑠𝑒𝑙𝑒𝑐𝑡 (𝑃𝑜𝑝, 𝑡 ) ;
15 𝑆 := 𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟 (𝑆1, 𝑆2 ) ;
16 𝑆 :=𝑚𝑢𝑡𝑎𝑡𝑒_𝑝𝑟𝑜𝑏 (𝑆, 𝑟 ) ;

used in DeepTest [54] and DeepHunter [63]. For each selected gene,
the mutation randomly selects a transformation function to mutate
it. To guarantee the validity of the generated inputs, we adopt the
conservative strategy [63] that constrains the transformation with
both 𝐿0 and 𝐿∞.

4 EVALUATION
We have implemented DistXplore in Python 3.6 based on DL frame-
work Keras (ver.2.3.1) with Tensorflow (ver.1.15.2). To evaluate the
effectiveness of DistXplore in the model evaluation and model en-
hancement, we aim to answer the following research questions
(RQs), where RQ1 and RQ2 are to demonstrate the effectiveness in
model evaluation, RQ3 and RQ4 are to evaluate the model enhance-
ment, and RQ5 is to study the generalization of DistXplore.
• RQ1: How effective is DistXplore in detecting errors 1 that can
bypass the defense methods?

• RQ2: How efficient is DistXplore for discovering valid errors?
• RQ3: How effective is DistXplore in improving the robustness of
the DL model under testing?

• RQ4: How useful are distribution difference diversity and target
class diversity in improving robustness?

• RQ5: Can DistXplore be generalized to other domains?

4.1 Setup
4.1.1 Datasets andDNNModels. We select four datasets (i.e., MNIST,
Fashion-MNIST, CIFAR-10, and SVHN) and six DNNs (i.e., LeNet-4,
LeNet-5, VGG16, ResNet-20, Inception-v3, and Inception-ResNet-v2)
that are commonly used in existing works [11, 16, 20, 33, 55, 60, 61].

4.1.2 Baselines. To evaluate the effectiveness of DistXplore, we
select 4 types of approaches including 14 state-of-the-art baselines
for the comparisons: 6 adversarial attacks, 4 distribution-unaware

1The error in the paper refers to the erroneous inputs that are missclassified.
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testing techniques, 3 distribution-aware testing techniques and 1
robustness-oriented testing.

• Adversarial Attack. We select 6 adversarial attack techniques, in-
cluding 3 classical ones i.e., BIM [29], PGD [37], and C&W [5], and
3 new ones, i.e., DI-2-FGSM (D2F) [60], SI-NI-FGSM (SNF) [33],
and TI-FGSM (TIF) [11] to generate adversarial examples and
compare them with the errors generated by DistXplore.

• Distribution-unaware Testing. We select DeepHunter [63], Neuron
Path Coverage (NPC) [62], and Combinatorial Testing (CT) [50]
as the baselines. DeepHunter is configured with two different
coverage guidance, i.e., k-multisection Neuron Coverage (KMNC),
Neuron Boundary Coverage (NBC). KMNC and NBC are designed
to test the major function region and the corner-case region [35];
NPC is configured with Structure-based Neuron Path Coverage
(SNPC), which is designed to test the decision logic; CT takes the
relationships between neurons in adjacent layers into considera-
tion when testing DNN models.

• Distribution-aware Testing. We select three recent distribution-
aware testing techniques [22, 27, 55] as baselines. In [27], the test
selection criteria are proposed to measure the Surprise Adequacy
(SA) of test cases. We select the Likelihood-based SA (LSA) that
measures the training distribution with Kernel Density Estima-
tion as a baseline. In [55], a variational auto-encoder (VAE) is
used to specifically generate in-distribution test cases. In [22], a
hierarchical distribution-aware (HDA) testing is proposed based
on the global distribution and local distribution. We denote these
two baselines as VAE and HDA, respectively.

• Robustness-oriented Testing. To evaluate the robustness enhance-
ment, we select the state-of-the-art robustness-oriented testing
technique Robot [57] as our baseline.

4.1.3 Defense Methods. To evaluate the strengths of generated
errors by different techniques, we select two state-of-the-art defense
methods that detect adversarial examples as follows:

• Dissector [56], which dissects the outputs of intermediate layers
and calculates a score for the given input. The score shows the
degree of similarity between the input and benign data. For LeNet-
4 and LeNet-5, we select the fully connected layers. For efficiency,
five intermediate layers are selected for larger model. The details
are provided on our website [2].

• Attack as Defense (A2D) [69], which detects adversarial samples
based on the observation that adversarial samples are less robust
than benign ones. It measures the robustness of the given inputs
with existing adversarial attacks. We use JSMA [45] (that is dif-
ferent from baseline adversarial attacks) to calculate the attack
cost of each input for detecting whether it is abnormal input.

4.1.4 Experiment Setup.

Seed Selection. For each task, we randomly select 100 seed inputs
for each class from training dataset. Totally, we select 1,000 seeds
that are used by all baselines. Note that the HDA approach proposes
a distribution-aware strategy to select seeds, hence we configure
HDAwith two initial seed construction strategies: 1) using the same
1,000 seed inputs as used for other baselines for a fair comparison
(denoted as 𝐻𝐷𝐴) and 2) using the HDA’s own seed selection to
select 1,000 initial seed inputs (denoted as 𝐻𝐷𝐴𝑜 ).

Configuration of DistXplore. We use the 100 initial seeds selected
in each class as a seed test suite. For each class 𝑐 , we run DistXplore
multiple times (i.e., 9) by setting different target classes 𝑐′ with
Algo. 1. Finally, for each model, we run DistXplore 90 times (i.e.,
10 source classes × 9 target classes). We set the fitness function as
minimizing the distribution difference (i.e., the values of 𝑣 and 𝜖 in
Algo. 1 are configured as 0). Note that, to calculate the difference ef-
ficiently, we randomly select another 100 samples from the training
data in class 𝑐′ instead of all of them. We found that the distribu-
tion distance between the selected samples and the corresponding
class of training data is close to zero (MMD), which indicates that
the selected training samples can represent the distribution of the
whole training data.

For each run ofDistXplore, we limit the total number of iterations
in GA as 30. We empirically configured the population size, the
tournament size, and the mutation rate as as 100, 20, and 0.01,
respectively. Due to the limit of the space, the experiments about
the impact of the parameters are put on our Website [2]. For the
robustness enhancement, we do not explicitly generate test cases
for each interval (see 𝐷𝑖𝑣 (𝑇𝑆𝑐 ) in Section 3.1.2). Instead, we map
the distribution difference in each iteration (i.e., the fitness value)
to an interval. During the optimization process, the distribution
distance is decreasing in multiple iterations, covering different
intervals. To ensure the validity of the generated test cases, we adopt
a more conservative configuration compared to DeepHunter [63]
to constrain the mutation.

Configuration of Baselines. For the three classic adversarial at-
tacks, we perform the target attack for each seed input by selecting
other classes as the targets, i.e., we generate 9 adversarial examples
for each seed input. For the three new adversarial attacks, as they
are not designed for target attacks, we perform untarget attack with
the default configurations provided.

Note that LSA is a test selection metric instead of a testing tool.
To perform the comparison, we develop a new testing tool based on
DeepHunter, i.e., using LSA as the guidance to generate test cases.

For others, we follow their default configurations to run Deep-
Hunter, CT, NPC, HDA, VAE, and Robot. Specifically, each model is
tested for 5,000 iterations by DeepHunter (KMNC and NBC), CT,
and NPC. Each seed is optimized with 50, 30, and 30 iterations by
HDA, VAE, and Robot, respectively. More detailed settings can be
found on our website [2].

RQ Setup. To demonstrate the capability of DistXplore in gen-
erating strong errors for model evaluation (RQ1), we collect the
test suite in the last iteration for every pair (𝑐, 𝑐′) (i.e., the best
chromosome returns from Algo 1). For each model, we collect a
total number of 90 chromosomes over 90 pairs, which are used
to evaluate the strength of these errors. The strength of errors is
measured by the success rate of bypassing defenses. In addition,
we also evaluate the efficiency of DistXplore for discovering valid
errors (RQ2). To evaluate the efficiency, we count all the errors
generated during the 30 iterations. Specifically, we select two met-
rics for the comparisons: the total number of errors and the success
rate of generating errors for each seed. To evaluate the validity of
generated errors, we perform a human study to manually check
the validity of the discovered errors.
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Table 1: Results of bypassing the defense techniques on datasets MNIST (M), Fashion MNIST (FM), CIFAR-10 (C), and SVHN (S) and DNNs
LeNet-4 (L-4), LeNet-5 (L-5), VGG16 (V-16), ResNet-20 (R-20), Inception-ResNet-v2 (IR-V2), and Inception-v3 (I-V3).

DS Model Defense DistX BIM PGD C&W D2F SNF TIA KMNC NBC CT NPC LSA HDA 𝐻𝐷𝐴𝑜 VAE

M
L-4 Dissector 0.97 1.00 1.00 1.00 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 1.00 1.00 1.00

A2D 0.58 1.00 1.00 1.00 0.99 0.81 0.99 0.87 0.88 0.73 0.69 0.67 1.00 1.00 1.00

L-5 Dissector 0.93 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.97 0.97 0.97 0.99 1.00 1.00
A2D 0.68 0.99 1.00 1.00 1.00 0.78 1.00 0.81 0.79 0.78 0.84 0.85 0.99 1.00 1.00

FM
L-4 Dissector 0.85 0.95 1.00 1.00 0.98 0.97 0.99 0.95 0.95 0.90 0.93 0.89 0.91 0.97 -

A2D 0.35 0.91 0.99 0.98 0.87 0.74 0.77 0.80 0.80 0.60 0.63 0.46 0.95 0.97 -

L-5 Dissector 0.82 0.96 0.96 0.99 0.93 0.89 9.95 0.89 0.87 0.85 0.95 0.87 0.86 0.96 -
A2D 0.44 0.87 0.89 0.97 0.85 0.87 0.88 0.55 0.59 0.53 0.94 0.60 0.92 0.99 -

C

V-16 Dissector 0.83 0.99 0.98 0.98 0.96 0.92 0.95 0.96 0.95 0.95 0.95 0.94 0.91 0.93 -
A2D 0.59 0.99 0.95 0.98 0.92 0.81 0.91 0.77 0.77 0.78 0.77 0.83 0.89 0.93 -

R-20 Dissector 0.89 0.99 0.99 0.99 0.94 0.93 0.94 0.89 0.89 0.92 - 0.92 0.90 0.90 -
A2D 0.39 0.96 0.95 0.78 0.93 0.95 0.83 0.56 0.56 0.89 - 0.97 0.91 0.89 -

IR-V2 Dissector 0.84 0.98 0.98 0.99 0.90 0.89 0.90 0.87 0.87 0.86 - 0.86 0.91 0.90 -
A2D 0.24 0.76 0.81 0.76 0.36 0.51 0.36 0.47 0.49 0.53 - 0.51 0.53 0.66 -

I-V3 Dissector 0.83 0.97 0.97 0.98 0.92 0.91 0.92 0.89 0.90 0.90 - 0.89 0.93 0.93 -
A2D 0.27 0.82 0.84 0.72 0.41 0.50 0.35 0.49 0.46 0.42 - 0.43 0.56 0.55 -

S
V-16 Dissector 0.86 0.99 0.99 0.99 1.00 0.96 0.99 0.98 0.99 0.95 0.96 0.94 0.94 0.96 0.99

A2D 0.36 0.95 0.97 0.98 1.00 0.91 0.99 0.62 0.75 1.00 1.00 0.57 0.57 0.90 0.97

R-20 Dissector 0.88 0.99 0.99 0.99 0.98 0.95 0.98 0.92 0.92 0.95 - 0.92 0.94 0.97 0.99
A2D 0.44 0.98 0.97 0.96 0.98 0.95 0.97 0.90 0.85 1.00 - 0.98 0.65 0.91 0.99

To demonstrate the capability in enhancing robustness, we select
test suites with diverse distributions (i.e., distribution difference
diversity and target class diversity). For each pair (𝑐, 𝑐′), we split the
distribution difference [𝐷𝐹1, 𝐷𝐹30] into 10 intervals, where 𝐷𝐹𝑛
represents the best fitness value in the 𝑛𝑡ℎ iteration. Note that the
fitness values in multiple iterations may fall into the same interval.
To achieve the distribution difference diversity, we randomly select
an iteration from each interval and collect its best chromosome (i.e.,
10 chromosomes for each pair). To achieve the target class diversity,
we consider all of other classes as the targets (i.e., 9 targets for each
source). Finally, we collect 900 test suites (10 intervals× 90 pairs) for
fine-tuning in RQ3 (e.g., Test suite 1, 2, 3, 4, . . . in Fig. 3). To conduct
a fair comparison, we collect the same number of test cases by
each baseline for retraining. Specifically, for adversarial attacks, we
configure different parameters such that we can generate multiple
adversarial examples for each seed input. For testing tools, we first
generate a large number of errors, and then randomly select the
same number of inputs for retraining.

For RQ4, we evaluate the usefulness of distribution difference
diversity and target class diversity in robustness enhancement. We
collect two sets for retraining: 1) we only consider the distribution
difference diversity and ignore the target class diversity. We ran-
domly select one target class and collect multiple chromosomes
from each interval, denoted as DistXplore𝑑𝑓 (e.g., Test suite 1, 2 in
Fig. 3). 2) We select all target classes for the target class diversity but
restrict their intervals. For each target class, we randomly select
some chromosomes from only one interval, denoted as DistXplore𝑡 .
(e.g., Test suite 1, 3 in Fig. 3). Note that, to make a fair comparison
with the results in RQ3, we control the number of test cases in
DistXplore𝑑𝑓 and DistXplore𝑡 by collecting multiple chromosomes
from an interval, such that they have the same size with the data
using in RQ3 (i.e., 900 test suites).

For the robustness measurement in RQ3 and RQ4, we select the
empirical robustness that is commonly used in previous works [22,
57]. The empirical robustness is measured by the accuracy on a

validation dataset. To generate such a validation dataset, we select a
new set of initial seeds (1,000) that differs from the seeds in testing.
Then we runDistXplore and other baselines to generate errors based
on new seeds. These errors found by different tools form a new
test set for evaluating empirical robustness. Considering that the
transformation strategies are different in different types of tools, we
try to construct a balanced dataset for a fair comparison, including
9,000 errors from each type of tool, i.e., adversarial attacks (3,000 for
each of BIM, PGD, and C&W), distribution-unaware testing (4,500
for each configuration of DeepHunter), distribution-aware testing
(3,000 for each of LSA, VAE, and HDA), and distribution-guided
testing (100 for each source-target pair).

For RQ5, we evaluate the generalization ability of DistXplore by
adapting it to twoNLP classification tasks: i.e., sentiment analysis on
IMDB [36] and news classification on AG’s News [67]. We fine-tune
the pre-trained model BERT [8] on the two datasets, respectively.

Due to the intrinsic differences between images and textual data,
we develop the text specific mutation strategies. The details about
the text mutation can be found on the Website [2]. As other testing
tools are mainly used in image domain, we select two NLP adver-
sarial attacks (i.e., PWWS [48] and TextFooler [23]) as the baselines.
Additionally, we select the state-of-the-art method WDR [41] as
the defense technique as Dissector and A2D are not suitable for
BERT pre-trained models.

We follow the existing work [63] and repeat each experiment
5 times to reduce the effect of the randomness during the test
generation.

4.2 Results
4.2.1 RQ1:Strength of Errors. We evaluated our method using
three metrics: the unique number of errors, the success rate, and the
strength of errors. The unique number of errors represents the total
number of erroneous inputs generated within a given time budget.
This metric is widely used in existing DL testing works [1, 3, 6, 10,
24, 34, 57, 65, 72, 73] and provides a measure of the effectiveness of
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DL testing. The success rate measures the percentage of seed inputs
from which the testing tools can generate at least one erroneous
input. This metric has been employed in DL testing and adversarial
attack tools [3, 11, 33, 60, 65, 66]. A higher success rate indicates that
our method is capable of generating errors for a larger proportion of
seed inputs. The strength of errors quantifies the severity or impact
of the erroneous inputs generated. We emphasize the importance
of generating strong errors, as weaker errors can be easily detected
by existing defense tools.

Table 1 shows the results on the strength of generated errors
by different methods. For Dissector, we use AUROC to indicate the
capability on detecting errors. For Attack-as-Defense, we show the
proportion of errors that can be detected. The symbol - in column
NPC indicates that NPC cannot be used to test these DNNs since
the critical paths can not be extracted. The symbol - in column VAE
indicates that the VAE method does not work well on the selected
task as mentioned in [9].

The overall results show that DistXplore (column DistX ) can
generate more strong errors that are difficult to be detected by
defense techniques compared with baselines. Specifically, all errors
generated by adversarial attacks underperform DistXplore, which
may be because that they only add minor perturbations. We also
found that the new advrsarial attacks outperform the classic ad-
versarial attacks (i.e., BIM, PGD, C&W). Compared with testing
techniques, we can see that DistXplore performs better in most
cases. Comparing the results between distribution-unaware testing
(i.e., KMNC, NBC, CT, and NPC) and distribution-aware testing
(i.e., HDA/𝐻𝐷𝐴𝑜 and VAE), we found that distribution-unaware
testing tends to perform better because it generates some OOD
data, indicating that ID errors (from distribution-aware testing)
are easier to detect. DistXplore explicitly considers the distribution
difference, which guides to generate statistically indistinguishable
errors that are more difficult to detect.

Compared to other distribution-aware testing (i.e., HDA/𝐻𝐷𝐴𝑜

and VAE), we found that the errors generated by LSA are harder
to detect because LSA can also generate OOD data based on the
surprise guidance. DistXplore performs better than LSA since it
considers the distribution difference between each two classes and
optimizes each test suite, making the discovered errors statistically
indistinguishable compared with other classes.

Answers to RQ1-1: Compared with adversarial attacks and
existing DL testing techniques, DistXplore is more effective in
generating hard-to-detect errors. Existing distribution-aware
testing techniques mainly focus on generating in-distribution
data that could be easier to detect.

Fig. 5 shows the relationship between the distribution difference
and the strength of errors. Due to the space limit, other results are
put on our website [2]. For each pair (𝑐, 𝑐′), we collect the best
chromosome 𝑆 after each iteration and calculate: 1) MMD_target:
the distribution difference between 𝑆 and the training data of target
class 𝑐′, 2) MMD_source: the distribution difference between 𝑆 and
the training data of source class 𝑐 , 3) Error Rate: the proportion
of errors in 𝑆 , 4) Error_target Rate: the proportion of errors (in 𝑆)
predicted as the target class and, 5) Dissector and A2D: the results
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Figure 5: The average results during the optimization of DistXplore
(model: LeNet-5)

Table 2: Results of efficiency on four datasets
DS Mod Metric DistX KMNC NBC LSA HDA VAE

M

L-4
Time (s) 257.7 737.9 471.4 1271.9 1937.8 1166.2
#Error 21,008.6 4655.4 8029.8 8985.2 58.8 32.8
Succ.R 1.00 0.65 0.96 0.96 0.59 0.33

L-5
Time (s) 159.4 1260.0 758.9 2200.0 1563.7 3810.0
#Error 9602.4 3414.4 6445.8 7132.4 8.8 43.4
Succ.R 0.89 0.61 0.95 0.96 0.09 0.43

FM

L-4
Time (s) 258.9 734.1 549.0 1002.8 1963.7 -
#Error 21,082.8 10,396.8 15,409.8 19,607.2 97.4 -
Succ.R 1.00 0.73 0.80 0.92 0.97 -

L-5
Time (s) 160.8 1810.4 1137.0 1234.0 1894.4 -
#Error 18,747.4 11,064.4 15,562.8 17,756.4 94.8 -
Succ.R 0.99 0.72 0.99 0.97 0.95 -

C

V-16
Time (s) 613.9 24,820.1 13316.1 3031.2 7255.9 -
#Error 26,131.4 5924.6 8510.6 10,853.2 81.4 -
Succ.R 1.00 0.79 0.94 0.93 0.82 -

R-20
Time (s) 605.6 4768.5 2956.1 2931.6 6102.5 -
#Error 30,016.8 8683.4 10,176.6 13,701.6 96.2 -
Succ.R 0.97 0.68 0.82 0.73 0.96 -

S

V-16
Time (s) 581.8 24,412.3 12,488.2 6903.4 6893.6 6448.1
#Error 29,793.4 2342.4 2856.2 3936.2 75.8 98.6
Succ.R 1.00 0.70 0.70 0.70 0.76 0.99

R-20
Time (s) 606.6 4435.4 2842.5 6645.7 6533.7 5749.1
#Error 29,627.4 4122.8 5508.6 9653.6 76.8 98.6
Succ.R 1.00 0.53 0.75 0.81 0.77 0.99

detected by the different defense techniques. We average the results
from all pairs, and normalize the results from 0 to 1 except for Error
Rate and Error_target Rate for easier comparison.

The results show that, during the optimization, the distribution
of 𝑆 is getting closer to the training distribution of the target class
(see MMD_target) and getting farther away from the source class
(see MMD_source). Meanwhile, Error Rate and Error_target Rate are
increasing, indicating that more errors are generated and gradually
become statistically indistinguishable between the original class
𝑐 and target class 𝑐′. The effect of indistinguishability can be fur-
ther confirmed by the detection results (i.e., Dissector and A2D):
errors become indistinguishable and difficult to detect while the
MMD_target decreases.

Answers to RQ1-2: The distribution difference is useful in
guiding the generation of statistically indistinguishable errors,
making them more difficult to detect. Compared with others,
DistXplore generates more diverse errors.
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4.2.2 RQ2: Efficiency of DistXplore. We further study the effi-
ciency of DistXplore in discovering errors, as shown in Table 2.
Note that we do not set the same time to run all tools as differ-
ent tools have different configuration methods. We emphasize that
this paper mainly focuses on generating high-quality (i.e., hard-to-
detect) errors rather than merely comparing the total number of
errors within a set time, as many weak errors can be easily detected
by defense methods (see RQ1 results).

In Table 2, we show the time used for each tool under its config-
uration (Time (s)) and the total number of errors (#Error). Due to
the space limit, other results are put on our website [2]. We do not
show the results of adversarial attacks here because they differ from
the settings of testing tools, i.e., they generate an adversarial exam-
ple for each seed. Overall, we can observe that DistXplore (column
DistX ) generates more errors while uses the shortest time. We could
also observe that the existing distribution-aware testing tends to
be slower due to time-consuming distribution measurements, such
as the Kernel Density Estimation and VAE. Table 2 also shows the
success rate of generating errors for each seed. The results show
that DistXplore has a higher success rate than other baselines. We
also notice a exception that LSA achieves higher success rate on
MNIST LeNet-5. We conjecture that it is due to the optimization ob-
jective of DistXplore that minimizes the distribution distance, rather
than specifically guiding misclassification for individual samples.
In some specific datasets, the optimization may not require errors
for certain seeds.

In order to evaluate the validity of the generated inputs, we
conducted a manual investigation by randomly selecting 10,000
erroneous inputs from the testing outputs of each model and calcu-
lating the average validity ratio. The validity ratios were found to
be 98.5%+, 96.5%+, 98.7%+, and 95.3%+ for MNIST, Fashion-MNIST,
CIFAR-10, and SVHN datasets, respectively. The results demon-
strate that DistXplore is capable of generating valid inputs with
high proportions. More details are provided on our website [2].

Answers to RQ2: Compared to other DL testing tools, DistX-
plore achieves the highest efficiency in terms of the number of
errors generated per second and success rates. Moreover, Dis-
tXplore is more effective in terms of generating valid samples.

4.2.3 RQ3: Robustness Enhancement. For each tool, we fine-tune
the original model 20 epochs following previous works [25, 38, 49]
by adding the new data generated from each tool, and evaluate the
empirical robustness of the new model on the validation dataset
we created. Note that all data in validation dataset is predicted
incorrectly by the original model. Table 3 shows the accuracy of
fine-tuned models on the validation dataset. As expected, DistX-
plore outperforms the adversarial attacks, distribution-aware test-
ing, distribution-unaware testing, and robustness-oriented testing.
The overall results demonstrated the effectiveness of DistXplore in
improving robustness. In addition, LSA achieves the second best re-
sults which outperform the results of other baselines, because LSA
can generate some OOD test cases, increasing the diversity. The
three modern adversarial attack techniques perform worse than
the three classic techniques, because these techniques are designed
for untarget attack, which decrease the distribution diversity.
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Figure 6: Accuracy on different types of dataset (model: VGG16)

Answers to RQ3-1: Overall, DistXplore is effective in improv-
ing robustness by generating data with different distributions.
Distribution-aware testing techniques only consider ID data,
making it perform poorly on errors generated by other tools.

To further interpret the results, we analyze the accuracy on dif-
ferent kinds of validation dataset, which is shown in Fig. 6. Other re-
sults are shown in the website [2]. Recall that our validation dataset
includes 9,000 errors from distribution-guided testing DistXplore
(i.e., D-G), 9,000 errors from adversarial attacks (i.e., Adv), 9,000 er-
rors from distribution-aware testing LSA, HDA, and VAE (i.e., D-A),
and 9,000 errors from distribution-unaware testing (i.e., D-U ). Note
that the dataset D-G and D-U cover more diverse transformations
(e.g., rotation and translation) while the dataset Adv and D-A are
mainly created by the noise-based transformation. Specifically, the
image transformation directly determines the distribution of the
generated test cases[4] that further affects the accuracy evaluation.
Taking into account that these tools use different transformations,
we build such a balanced validation dataset for a fairer comparison.

Not surprisingly, each tool usually achieves better accuracy on
the validation data generated by the same type of tools, because they
have similar distribution, while the data from other types of tools
are more likely to be OOD. For example, BIM, PGD, and C&W get
much higher accuracy on Adv dataset since the added training data
and the Adv data are very similar (i.e., adding minor perturbation).
However, the tools with only noise-based perturbation (i.e., BIM,
PGD, C&W, HDA, VAE, and RobOT) achieve much lower accuracy
on the data D-G and D-U that use very different transformation.
Their accuracy on D-G (<0.09) is relatively lower than that on D-U
(>0.09), indicating some errors generated by DistXplore are harder
to predict.

Comparing the results between DeepHunter and DistXplore,
which use the same transformations, we found that DeepHunter
achieves lower accuracy than DistXplore on D-G data because Dis-
tXplore generates test cases with diverse distributions, which may
be OOD for DeepHunter. As for the data D-U generated by Dee-
pHunter, the accuracy of DistXplore is slightly higher than that
of DeepHunter, which indicates that the errors from DistXplore
could cover some distribution of the data generated by DeepHunter.
Considering the distribution-aware testing HDA and VAE, as they
only generate ID data, they perform much worse on other dataset.

Consider the results of distribution-aware testing (HDA and
VAE), adversarial attacks (BIM, PGD and C&W), and robustness-
oriented testing, which use the same transformation, we found that
HDA and VAE achieve lower accuracy (see Table 3), indicating that
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Table 3: Results of robustness enhancement using the test cases generated by different tools on four datasets
D M DistXplroe BIM PGD C&W D2F SNF TIF KMNC NBC CT NPC LSA HDA 𝐻𝐷𝐴𝑜 VAE Robot

M L-4 0.81 0.64 0.65 0.59 0.57 0.60 0.56 0.52 0.54 0.63 0.63 0.72 0.61 0.63 0.55 0.52
L-5 0.81 0.66 0.65 0.66 0.41 0.49 0.46 0.65 0.68 0.45 0.45 0.76 0.59 0.57 0.57 0.56

FM L-4 0.73 0.56 0.60 0.59 0.59 0.57 0.60 0.61 0.61 0.57 0.61 0.71 0.61 0.60 - 0.48
L-5 0.80 0.58 0.58 0.55 0.49 0.54 0.53 0.54 0.56 0.55 0.50 0.75 0.55 0.58 - 0.41

C

V-16 0.83 0.53 0.53 0.53 0.30 0.33 0.30 0.73 0.70 0.36 0.36 0.80 0.51 0.55 - 0.52
R-20 0.76 0.61 0.61 0.62 0.45 0.46 0.46 0.60 0.60 0.53 - 0.70 0.62 0.64 - 0.62
IR-2 0.97 0.92 0.93 0.92 0.91 0.89 0.90 0.91 0.92 0.91 - 0.92 0.89 0.89 - 0.89
I-3 0.99 0.93 0.93 0.93 0.92 0.91 0.92 0.92 0.93 0.93 - 0.93 0.91 0.90 - 0.89

S V-16 0.66 0.55 0.54 0.54 0.22 0.28 0.27 0.55 0.57 0.29 0.30 0.59 0.50 0.50 0.49 0.52
R-20 0.54 0.49 0.49 0.49 0.36 0.37 0.36 0.44 0.44 0.42 - 0.46 0.44 0.43 0.43 0.36

Table 4: Results of robustness with different distribution diversity
Dataset Model DistXplore DistXplore𝑑𝑓 DistXplore𝑡

MNIST LeNet-4 0.81 0.61 0.76
LeNet-5 0.81 0.63 0.74

FMNIST LeNet-4 0.73 0.62 0.68
LeNet-5 0.80 0.65 0.72

CIFAR-10

VGG16 0.83 0.62 0.80
ResNet-20 0.76 0.63 0.74
IR-V2 0.97 0.87 0.93
I-V3 0.99 0.89 0.95

SVHN VGG16 0.66 0.55 0.62
ResNet-20 0.54 0.42 0.47

only considering ID is less effective in improving the robustness,
especially on OOD data.

The data generated by different testing tools may have differ-
ent distributions, depending on their transformation and guidance
strategies. All these data could be the potential inputs in the real-
world deployment, and test cases generated by a tool may not cover
all distributions. For example, although DistXplore is designed to
increase the distribution diversity, it does not always cover the data
distribution from other tools. In general, it can cover more unseen
distributions if we gradually increase the distribution diversity.

Answers to RQ3-2: DistXplore can generate test cases with
diverse distributions, which can identify more unseen data for
further robustness improvement.

4.2.4 RQ4: Usefulness of Distribution Diversity. Table 4 shows the
results about the usefulness of the distribution difference diversity
and target diversity. DistXplore, DistXplore𝑑𝑓 , and DistXplore𝑡 rep-
resents the accuracy of models fine-tuned with different data (see
more configuration details in Section 4.1.4). Note that the number
of data used in DistXplore𝑑𝑓 , DistXplore𝑡 , and DistXplore are the
same. Compared to the results DistXplore, we found that the accu-
racy drops if only considering the distribution difference diversity
(DistXplore𝑑𝑓 ) or target diversity (DistXplore𝑡 ), which indicates the
usefulness of both kinds of diversity in improving the robustness.

Answers to RQ4: Both distribution difference diversity and
target class diversity are useful in improving the robustness.

4.2.5 RQ5: Generalization Ability. Table 5 shows the results on the
strength of generated errors by different methods, i.e., the percent-
age of errors that can be detected by existing detection methods.

The overall results show that DistXplore can still generate strong
errors than the selected baselines. Moreover, the results also demon-
strate the generalizability of DistXplore to other domains.

Discussion on application scope. This paper primarily focuses
on the classification task, which is one of the most popular and
important machine learning tasks, and has been widely studied in
the research area of DL testing [21, 24, 27, 32, 35, 43, 50, 52, 54, 57,
59, 63, 64]. While there is much less work on testing generation
tasks in the literature due to the challenge of defining test oracles,
i.e., how to define the errors. Recently, researchers proposed a
few metamorphic relations [17, 53] for machine translation tasks
to overcome the problem. It is noteworthy that the challenge of
test oracle is orthogonal to the problem we aim to solve in the
paper. Considering that none of the existing works look into data
distribution, we believe thatDistXplore could also play an important
role in generating test cases with better diversity for generation
tasks in view that data distribution is a fundamental concept for
general learning tasks.

Specifically, DistXplore can be extended to generation tasks by
modifying the feedback of distribution differences. Currently, in
classification tasks, we select other classes as targets to guide the
generation of test suites for achieving diverse distributions due
to the classification characteristics. For generation tasks that do
not have classes, suppose there is a generation model that can
generate human faces following a specific distribution (based on the
training samples), we can select other datasets, such as ImageNet [7],
CIFAR [28], or other image datasets, as the targets to guide the
generation of test suites such that the test suites can also have
diverse distributions. However, how to select the target distribution
and how effectively they can help with the testing require further
exploration and evaluation. We leave the extension to generation
tasks as our future work.

Answers to RQ5: DistXplore is also useful in testing NLP
models.

5 THREATS TO VALIDITY
There are some threats that could affect the validity of the results.
The selected models and datasets are threats to the validity. We
mitigate these threats by selecting the popular datasets and mod-
els that are used by existing DL testing works. The randomness
could be a threat, which is mitigated by generating a large number
of test cases over a relatively long time and running each tool 5
times in our experiments. In addition, we make our experimental
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Table 5: Results of bypassing the defense techniques for NLP tasks
Dataset Defense DistXplore PWWS TextFooler
IMDB WDR 0.19 0.96 0.94

AG’s News WDR 0.22 0.98 0.99

results publicly available. The selection of the seed inputs is a threat.
We mitigate it by selecting a large number seeds (1,000) that are
used by all baselines. The layer selected for calculating the MMD
could be a threat to affect the results. We mitigate this problem by
selecting the commonly used layer, i.e., logits layer. In the future,
we plan to evaluate DistXplore by selecting different layers and
their combinations. Another threat is that the empirical robustness
depends on the validation dataset, and the transformations used
in selected tools are different, which could be a threat to affect
the results. To mitigate this problem, we try our best to assemble
a balanced validation dataset comprised of data generated from
different types of testing tools (9,000 inputs generated by each type
of tool). Moreover, we choose a new set of seeds to generate the
validation dataset in order to avoid the overlapping between the
new training dataset and validation dataset.

6 RELATEDWORK
6.1 Distribution-Unaware Testing
Due to the differences between traditional software and deep neural
networks, some coverage criteria have been proposed. The general
idea is to define metrics for measuring the behaviors of the target
DNNs while the distribution is not explicitly considered. The Neu-
ron Coverage [46] is the first DL coverage criterion that measures
the percentage of neurons activated by the given inputs. Ma et
al.[35] then extended the Neuron Coverage and proposed a set of
fine-grained coverage criteria such as k-multisection Neuron Cover-
age (KMNC), Neuron Boundary Coverage (NBC), and Top-k Neuron
Coverage (TKNC). Although the distribution is not explicitly con-
sidered, there could be some implicit relationship between them.
For example, NBC defines the covered upper and lower corner case
regions, which is more related to OOD data. NPC [62] proposes
two path-based coverage criteria to measure the coverage on the
decision logic. A path represents a possible decision logic. Based on
the coverage criteria, some automated testing techniques have been
developed such as DeepXplore [46], DLFuzz [15], DeepTest [54],
DeepHunter [63], DeepStellar [12], and TensorFuzz [43]

Although these techniques could also generate test cases with
different distributions, none of them explicitly considers the dis-
tribution. For example, a lot of errors are generated but they may
follow the similar distributions. In addition, the existing works do
not consider the strength of generated errors. Differently, DistX-
plore generates strong errors that are statistically indistinguishable
and enhances robustness with different distributions.

6.2 Distribution-Aware Testing
Recently, some testing works start to discuss the effect of distribu-
tion for testing, which is based on the fact that a DLmodel is trained
on sampled training data following a specific distribution. Berend et
al.[4] conducted an empirical study on the relationships between
data distribution and existing testing techniques. They call for the
attention of data-distribution awareness when designing testing

methods. Zhou et al.[71] study the robustness of DNNs with distri-
bution awareness. Hu et al.[19] study the distribution-aware seed
selection methods for DNNs. Dola et al.[9] develop the distribution-
aware testing technique that basically generates the in-distribution
data by the Variational Autoencoders (VAEs). Toledo et al.[9] pro-
posed the distribution-aware verification. It uses a generative model
to represent the data distribution of the trained model, and then
changes the original model such that all the inputs to the DNN fol-
low the learned distribution. The most recent work [22] proposed a
hierarchical distribution-aware testing method that measures both
of global distribution and local distribution.

Besides, Kim et al.[27] propose LSA and DSA to measure the
surprise adequacy (SA) of the test cases, i.e., the surprise degree of
a single test case compared with the training data. Although both
DistXplore and SA consider the distance between test case(s) and
training data, there are some key differences: 1) DistXplore mea-
sures the distribution difference between two sets of data while SA
measures the surprise of a single test case In addition, considering
the distance calculation, DistXplore is more efficient. 2) DistXplore
is more fine-grained and considers intra-class and inter-class dis-
tribution shifts while SA mainly considers the distance between
a test case and all training data. 3) The goals are not totally the
same. SA is a test selection method that mainly selects surprising
data. However, it is not clear whether the surprising data (from
SA) is effective in generating hard-to-detect errors or enhancing
model’s robustness, which is our main focus. The evaluation results
demonstrate that DistXplore is more effective.

7 CONCLUSION
In this paper, we propose a distribution-guided testing approach
to evaluate and enhance DL models. To the best of our knowledge,
this is the first work that explicitly generates test cases with diverse
distributions. We discussed the relationship between validity and
distribution, where valid out-of-distribution data is ignored by ex-
isting distribution-aware testing. We evaluated the effectiveness of
DistXplore on 10 models and compared it with 14 state-of-the-art
tools. The results demonstrate that DistXplore is efficient and effec-
tive in discovering hard-to-defend errors and improving robustness.

Data Availability: We provide the source code and data on:
https://github.com/l1lk/DistXplore
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