
Towards Building a Generic Vulnerability
Detection Platform by Combining
Scalable Attacking Surface Analysis

and Directed Fuzzing

Xiaoning Du(B)

Nanyang Technological University, Singapore, Singapore
duxi0002@ntu.edu.sg

1 Introduction

Vulnerabilities are one of the major threats to software security. Usually, they are
hunted by security experts via manual code audits, or with some automated tools
like fuzzers (e.g., [1,5,12]) and symbolic execution (e.g., [4,7,10,13]), which can
provide concrete inputs to trigger and validate the vulnerabilities. As fuzzy static
scanners usually flag a list of potential vulnerable codes or functions with high
rate of false positive, we deem them in the spectrum of attack surface identifi-
cation approaches. The scalability of symbolic execution is extremely restricted
by the path exploration problem and solver capability, which makes it not a
preferable choice for large scale vulnerability detection. Coverage-based undi-
rected fuzzing is hardly scalable and effective in general due to the large size of
the program and the lack of good seeds to trigger various behaviors or execu-
tions. Faced with the fact that all existing static and dynamic detection tools
are concerned with the trade-off problem between scalability and precision, a
generic and scalable vulnerability detection platform is desirable.

As only a few vulnerabilities are scattered across a large amount of code,
vulnerability hunting is a challenging task that requires intensive knowledge and
skills and is comparable to finding “a needle in a haystack” [17]. Identifying
potentially vulnerable locations in a code base is critical as a pre-step for effec-
tive vulnerability assessment. Metric-based techniques, inspired by bug predic-
tion [11], leverage machine learning to predict vulnerable code at the granularity
level of a source file. It cannot work well due to the severe imbalance between
non-vulnerable and vulnerable code as well as the lack of features to reflect char-
acteristics of vulnerabilities. Pattern-based use patterns of known vulnerabilities
to identify potentially vulnerable code through static analysis. The patterns are
formulated by security experts using their domain knowledge, e.g., missing secu-
rity checks on security-critical objects [16], security properties [14], and vulner-
ability specifications [15]. Due to the requirement on prior knowledge of known
vulnerabilities, it can only identify similar but not new types of vulnerabilities.

Among the automated assessment tools, directed fuzzing [5,8] stands out for
its ability to reach a target program location efficiently and fuzz it effectively.
c© Springer Nature Switzerland AG 2018
J. Sun and M. Sun (Eds.): ICFEM 2018, LNCS 11232, pp. 464–468, 2018.
https://doi.org/10.1007/978-3-030-02450-5_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02450-5_36&domain=pdf


Towards Building a Generic Vulnerability Detection Platform 465

Experimentally fed with a limited portion of heuristically selected attack sur-
face, AFLGo [5] is reported to outperform directed symbolic-execution-based
whitebox fuzzing and undirected fuzzing. We believe its vulnerability-hunting
power can be further boosted with wisely identified attack surface. Currently,
the guiding in AFLGo is achieved just via power scheduling, which can be obtuse
and insensitive. Much improvement can be done to make the guiding strategy
more swift and intelligent.

In this study, we aim at combining attack surface identification and directed
fuzzing for building a generic and scalable vulnerability detection platform.

2 Our Approach

Fig. 1. An overview of the proposed framework

An overview of our proposed framework is shown in Fig. 1. Given an applica-
tion’s source code, the attack surface identification component is used to generate
a list of potential vulnerable functions based on the complexity and vulnerability
metrics of the application. These functions can be directly fed to the directed
fuzzing tool as targets to confirm the vulnerability with concrete triggering input.
Within the fuzzing tool, we use the function-directed fuzzing to reach the target
function, and combine with path-directed method to penetrate the target func-
tion to trigger the vulnerability. Note that finished components of the framework
are drawn with solid lines and explained below, and unfinished ones are drawn
with dashed lines as explained in next section.

We have proposed and implemented a generic, lightweight and extensible
framework, named Leopard, to identify attack surfaces at the function level
through program metrics. Leopard does not require any prior knowledge about
known vulnerabilities. It works in two steps by combining two sets of systemat-
ically derived metrics. Complexity metrics capture the complexity of a function
in two dimensions: the control structures in the function, and the loop structures
in the function. Vulnerability metrics reflect the characteristics of vulnerabili-
ties in three dimensions: the constants, pointers, and coupling level of predicates
in a function. Details about the metrics and some supplementary experimental



466 X. Du

results are available at our website [2]. First, it uses complexity metrics to group
the functions in a target application into a set of bins. Then, it leverages vul-
nerability metrics to rank the functions in each bin and identifies the top ones
as potentially vulnerable. Experimental results on nine real-life projects have
demonstrated that Leopard can cover 74% of vulnerable functions by identi-
fying 25% of functions as vulnerable; and Leopard can outperform machine
learning-based techniques. Based on the identified vulnerable functions in the
current stable release of PHP, a security expert discovered six zero-day vulnera-
bilities.

For the directed fuzzing, we have integrated the attack surface identification
framework with some off-the-shell directed fuzzing tools. We choose FOT [3],
which is a versatile, configurable and extensible fuzzing framework. It provides a
basic function-level directed fuzzing interface, requiring only a list of target func-
tions. The initial evaluation of the combined approach of using attack surface
identified by Leopard and feeding it to FOT demonstrates very encouraging
results with tens of crashes and zero-day vulnerabilities identified in popular
libraries like MJS, GNU bc, GNU diffutils, gpac, radare2, FLIF, libsass, libpff,
liblnk and jsmn. For the path-condition directed fuzzing, we have developed the
first penetration fuzzer by guiding the fuzzing to focus on the useful program exe-
cutions related to the vulnerable code, which by only considering the statements
with the positive effectiveness to the vulnerable code. The initial experiments
has shown positive results on CGC benchmark with complicated program logics,
where most existing fuzzers have failed. More investigation is needed to evalu-
ate the efficiency of different combination strategies of the two directed fuzzing
techniques, which have been further discussed in next section.

3 Future Work and Conclusion

3.1 Metrics Extension

The set of complexity and vulnerability metrics can be refined and extended, by
adjusting scores of existing metrics or incorporating new metrics, to highlight
interesting functions via capturing different perspectives. To this end, we have
identified the following information to be vital to further improve our findings.

Taint Information. Leveraging taint information will help an analyst to iden-
tify the functions that process the external (i.e., taint) input.

Vulnerability History. In general, recently patched functions are straightfor-
ward attack surface due to the verified reachability, with considerable risks of
incomplete patch or introducing new issues, but functions that are patched long
before the release of the current version tend to involve no vulnerabilities.

Domain Knowledge. Domain knowledge can play a vital role in prioritizing
the interesting functions for further assessment. Information such as the modules
that are currently fuzzed by others can be used to refine the ranking. It is also



Towards Building a Generic Vulnerability Detection Platform 467

interesting to explore what information can be mined from mailing list, twitters
and security blogs.

Architecture. Strong correlations between bug/vulnerability-prone files and
architecture design flaws [6,9] can also be considered in to light up attack surface
identification with some high level information.

3.2 Directed Fuzzing

To enhance the directed fuzzing for the effective usage of the potential vulnerable
functions, we are looking at two directions. Firstly, we want to investigate how to
combine the two directed fuzzing techniques into one holistic approach. Function-
level directed fuzzing is good at reaching target vulnerable functions, however to
trigger the vulnerability in the vulnerable function requires further penetration.
Therefore we can conduct the directed fuzzing in two steps by invoking the
two directed techniques sequentially. However, function-level directed fuzzing
may stuck in some code to reach the target function due to the lack of low-
level penetration in local path conditions. To address this, we need to invoke the
path-condition directed fuzzing together with the function-level directed fuzzing.
These phenomenons require a better interplay between the two techniques and
dynamic scheduling of them based on the progress. We are planning to propose
a runtime scheduler to orchestrate the two techniques dynamically.

Secondly, the metrics used to generated during the attack surface identifica-
tion step is statically calculated, which may not be precise. Hence the ranking
of vulnerable functions is less ideal. To address this, we can combine the fuzzer
deeper with the metrics calculation and vulnerable function ranking so that we
use the runtime information generated by fuzzer and adjust ranking of the vul-
nerable function dynamically. For example, this approach can directly remove
the easily reachable functions with high vulnerability metrics hence improving
the effectiveness of the approach.

3.3 Conclusion

This paper presented a generic framework for effectively finding vulnerabilities
in source code level. The key idea is to combine the scalable static analysis and
directed fuzzing to balance the trade off between scalability and accuracy.

References

1. American fuzzy lop. http://lcamtuf.coredump.cx/afl/ (2017)
2. Leopard. https://sites.google.com/site/leopardsite2017/ (2017)
3. FOT. https://sites.google.com/view/fot-the-fuzzer (2018)
4. Babić, D., Martignoni, L., McCamant, S., Song, D.: Statically-directed dynamic

automated test generation. In: ISSTA, pp. 12–22 (2011)
5. Böhme, M., Pham, V.T., Nguyen, M.D., Roychoudhury, A.: Directed greybox

fuzzing. In: CCS, pp. 2329–2344 (2017)

http://lcamtuf.coredump.cx/afl/
https://sites.google.com/site/leopardsite2017/
https://sites.google.com/view/fot-the-fuzzer


468 X. Du

6. Cai, Y., Xiao, L., Kazman, R., Mo, R., Feng, Q.: Design rule spaces: a new model
for representing and analyzing software architecture. TSE (2018)

7. Cha, S.K., Woo, M., Brumley, D.: Program-adaptive mutational fuzzing. In: SP,
pp. 725–741 (2015)

8. Chen, H., et al.: Hawkeye: towards a desired directed grey-box fuzzer. In: CCS
(2018)

9. Feng, Q., Kazman, R., Cai, Y., Mo, R., Xiao, L.: Towards an architecture-centric
approach to security analysis. In: WICSA, pp. 221–230 (2016)

10. Godefroid, P., Levin, M.Y., Molnar, D.A.: Automated whitebox fuzz testing. In:
NDSS (2008)

11. Malhotra, R.: A systematic review of machine learning techniques for software fault
prediction. Appl. Soft Comput. 27(C), 504–518 (2015)

12. Rawat, S., Jain, V., Kumar, A., Cojocar, L., Giuffrida, C., Bos, H.: Vuzzer:
application-aware evolutionary fuzzing. In: NDSS (2017)

13. Stephens, N., et al.: Driller: augmenting fuzzing through selective symbolic execu-
tion. In: NDSS (2016)

14. Vanegue, J., Lahiri, S.K.: Towards practical reactive security audit using extended
static checkers. In: SP, pp. 33–47 (2013)

15. Yamaguchi, F., Golde, N., Arp, D., Rieck, K.: Modeling and discovering vulnera-
bilities with code property graphs. In: SP, pp. 590–604 (2014)

16. Yamaguchi, F., Wressnegger, C., Gascon, H., Rieck, K.: Chucky: exposing missing
checks in source code for vulnerability discovery. In: CCS, pp. 499–510 (2013)

17. Zimmermann, T., Nagappan, N., Williams, L.: Searching for a needle in a haystack:
predicting security vulnerabilities for windows vista. In: ICST, pp. 421–428 (2010)


	Towards Building a Generic Vulnerability Detection Platform by Combining Scalable Attacking Surface Analysis and Directed Fuzzing
	1 Introduction
	2 Our Approach
	3 Future Work and Conclusion
	3.1 Metrics Extension
	3.2 Directed Fuzzing
	3.3 Conclusion

	References




