
MARVEL: A Generic, Scalable and Effective
Vulnerability Detection Platform

Xiaoning Du
Nanyang Technological University, Singapore

Abstract—Identifying vulnerabilities in real-world applications
is challenging. Currently, static analysis tools are concerned with
false positives; runtime detection tools are free of false positives
but inefficient to achieve a full spectrum examination. In this
work, we propose MARVEL, a generic, scalable and effective
vulnerability detection platform. Firstly, a lightweight static tool,
LEOPARD, is designed and implemented to identify potential
vulnerable functions through program metrics. LEOPARD uses
complexity metrics to group functions into a set of bins and
then ranks functions in each bin with vulnerability metrics. Top
functions in each bin are identified as potentially vulnerable.
Secondly, a directed grey-box fuzzer is designed to take the
results from LEOPARD for further confirmation. Our design
stands out with the ability to automatically group adjacent
functions and orchestrate both the macro level function directed
fuzzing and the micro level path-condition directed fuzzing.
LEOPARD is evaluated to cover 74.0% of vulnerable function
when identifying 20% of functions as vulnerable and outperforms
the baseline approaches. Further, three applications are proposed
to demonstrate the usefulness of LEOPARD. As a result, we
discovered 22 new bugs and eight of them are new vulnerabilities.

I. INTRODUCTION

Vulnerabilities are one of the major threats to software

security. Hunting vulnerabilities in real-world applications is

challenging, as the applications acn accept innumerable inputs

from a specific domain and are implemented with complex

code in a large scale. Since only a few vulnerabilities are

scattered across a large amount of code, vulnerability hunting

is comparable to finding “a needle in a haystack” [19]. Existing

dynamic and static detection tools either explore the input

space (e.g., black-box fuzzing [14] and grey-box fuzzing [1],

[13], [4], [11]) or analyze the internal program state space

(e.g., symbolic execution [9], [2] and metrics/pattern-based

analysis [12], [17], [10], [16], [5], [15]), hence both require

optimized search strategies to identify hidden vulnerabilities.

Static analysis tools try to explore the internal program

states by analyzing the source code or binary code. Most static

scanners work to flag potential vulnerable codes or functions

and can hardly provide concrete triggering inputs to validate

the feasibility of the vulnerability unless symbolic execution is

integrated. Unfortunately, scalability of symbolic execution is

extremely restrained by the path exploration problem and the

capability of SMT solvers. Inevitably, vulnerabilities reported

by static scanners could have high false positives. Currently,

input-oriented fuzzing techniques gain great popularity with

the ability to produce confirmed vulnerabilities with triggering

inputs. Different from the purely blind black-box fuzzing,

grey-box fuzzing take as feedback the coverage on internal

states to improve the testing efficiency. However, it still fails

to generate inputs to examine the full spectrum of states in the

program, especially states buried deeply. Instead, researchers

design fuzzers (AFLGo [3] and Hawkeye [7]) that can be

directed to fuzz designated parts of the program, assuming they

are aware of targets that are most likely vulnerable. The merit

behind directed grey-box fuzzing (DGF) relies on narrowing

down the search space and putting more time and efforts to

where it is needed most.

In order to take the advantages of both static and dy-

namic techniques, we propose to integrate static vulnerability

identification with DGF to achieve a generic, scalable, and

effective vulnerability detection platform, named MARVEL.

For the static analysis phase, we propose a lightweight ap-

proach, LEOPARD, to identifying potential vulnerable func-

tions through program metrics analysis. We first use com-

plexity metrics to group functions into a set of bins. Then,

vulnerability metrics are developed to rank the functions in

each bin and the top ones are recognized as potentially vul-

nerable. For the DGF phase, we present a design which aims

to overcome the problem with current directed fuzzers [3],

[7] of supportting only a few targets in a particular fuzzing

task. Besides, we plan to enhance DGF with some fine-

grained path condition penetration techniques, like local taint

analysis or local symbolic execution, in order to improve the

efficiency while keep good scalability. LEOPARD is evaluated

on 11 real-world projects and demonstrated to achieve an

average 74.0% recall when identifying 20% of functions as

potentially vulnerable, which outperforms the state-of-the-art

baseline approach, machine learning(ML)-based approaches

and pattern-based scanners. We further validate the usefulness

of LEOPARD in manual code review and fuzzing, through

which we discovered 22 new bugs in real applications like

PHP, radare2 and FFmpeg, and eight of them are new

vulnerabilities. More details can be found in [8].

II. OUR APPROACH

An overview of the MARVEL framework is shown in Fig. 1.

Given the source code of a C/C++ application, the vulner-

able function identification component, LEOPARD, works to

generate a list of potential vulnerable functions through a

program metrics based binning-and-ranking method. These

functions are then fed to the DGF component as targets to

further examine whether they can be confirmed vulnerable

with concrete triggering inputs. Adjacent targets are grouped to

fuzz in a parallel and efficient way. Function directed and path-

129

2019 IEEE/ACM 41st International Conference on Software Engineering: Companion Proceedings (ICSE-
Companion)

2574-1934/19/$31.00 ©2019 IEEE
DOI 10.1109/ICSE-Companion.2019.00056

Fig. 1. An Overview of the MARVEL Framework

condition directed strategies interweaves to reach the target

sites quickly. Note that completed functional modules in the

framework are drawn with solid lines, and ongoing ones are

marked with dashed lines.

A. Potential Vulnerable Function Identification

Binning. Four program complexity metrics are devised to

characterize the structural complexity of functions. Intuitively,

they are used to approximate the number paths in a function

by combining cyclomatic complexity and loop-related metrics.

We compute a complexity score for each function by adding

up the values of these complexity metrics and group functions

with the same score into the same bin.

Ranking. Memory management errors and missing checks

on sensitive variables forms a majority of critical types of

vulnerabilities in C/C++ programs. Based on this observa-

tion, eleven vulnerability metrics are developed to capture

the characteristics of general causes of vulnerabilities, which

are grouped in three dimensions: 1) two dependency metrics

to characterize the dependency relationship of a function

with other functions; 2) three pointer metrics to capture the

manipulation of pointers, e.g., the number of variables used

in pointer arithmetics; and 3) six control structure metrics to

capture the vulnerability resulting from the highly coupled and

dependent control structures, e.g., the maximum nesting level

of control structures and the number of if structures without

else statement. Basically, larger values of vulnerability metrics

indicate a function is involved in complicated computations

both internally and externally, and is potentially with memory

management problems, resulting the function hard to follow

and analyze, thus most likely to contain vulnerabilities.

The binning-and-ranking strategy incorporates both com-

plexity metrics and vulnerability metrics to identify vulner-

abilities at all levels of complexity without missing low-

complexity ones. Also it requires no prior knowledge about

known vulnerabilities compared to ML-based approaches.

B. Directed Grey-box Fuzzing

The vanilla grey-box fuzzing initially takes a set of seeds,

and loops over to prioritizes the seeds, selects one to do the

mutations, executes the newly generated inputs, checks their

coverage and keeps good ones to supplement the seed pool.

We design DGF based on Hawkeye, the state-of-the-art

DGF tool, and with two main enhancements. Firstly, the target

functions are grouped based on their distance on the call

graph. Adjacent targets are fuzzed within the same fuzzing

task, thus more targets (than Hawkeye) can be handled in a

parallel scheme to save computing resources. Secondly, we

desire a combination of both macro and micro guidance to

extensively felicitate the directed fuzzing process. Hawkeye

provides mainly the macro guidance on exploring a feasible

call chain leading to the target function, and we call it function

directed fuzzing. However, it is lack of micro guidance to

break through some complex path conditions more efficiently,

and technically we call it path-condition directed fuzzing.

Function directed fuzzing can easily get stuck at some complex

and tricky path conditions, especially when the searching space

is restricted by the target sites and these hard conditions

becomes the only way to make progress. To address this, we

suggest to combine the function directed fuzzing with the path-

condition directed fuzzing, also with an optimized interplay

between the two techniques. We plan to design a runtime

scheduler to orchestrate the two techniques dynamically.

III. EVALUATION

We implement LEOPARD in 11k line of Python code and

use Joern [16] to extract the program metrics.

Effectiveness. We evaluate the effectiveness of LEOPARD in

identifying vulnerable functions on 11 real-world applications,

including Binutils, FFmpeg, SQLite, Wireshark and

Linux Kernel. The benchmarks are from various applica-

tion domains and include large-scale ones. On average, when

identifying 15%, 20%, 25% of functions as vulnerable, we

achieve recalls of 64%, 74%, and 78%. Compared to the base-

line approach [18], 9.2%, 10.3%, and 7.4% improvement is

achieved. LEOPARD also outperforms ML-based approaches,

an open-source static scanner and a commercial static scanner

by a substantial margin.

Usefulness. To further evaluate the usefulness of LEOP-

ARD, three applications are designed to intake its results for

vulnerability assessment, including manual auditing, directed

fuzzing and seed prioritization. For manual auditing, in order

not to overwhelm the security expert, top 1% of vulnerable

functions from LEOPARD are presented to him with detailed

values for each metrics. For the directed fuzzing, we manually

select dozens of functions reported by LEOPARD and group

them based on the architectural modules. These targets are fed

to Hawkeye for bug hunting. For the seed prioritization, we

score all the functions based on its ranking given by LEOPARD

and guide grey-box fuzzing to favor seeds that can exercise

more vulnerable paths. Paths are scored via accumulating

the scores of functions on that path. A prototype has been

built upon FOT [6], an extensible fuzzing framework. Case

studies are conducted on FFmpeg, PHP, and radare2, with

which we discovered 22 new bugs and eight of them are new

vulnerabilities. Remarkably, six vulnerabilities are unveiled

with directed fuzzing, which also inspires us to investigate

a more efficient and fully automated DFG design.

130

REFERENCES

[1] American fuzzy lop. http://lcamtuf.coredump.cx/afl/, 2017.
[2] D. Babić, L. Martignoni, S. McCamant, and D. Song. Statically-directed

dynamic automated test generation. In ISSTA, pages 12–22, 2011.
[3] M. Böhme, V.-T. Pham, M.-D. Nguyen, and A. Roychoudhury. Directed

greybox fuzzing. In CCS, pages 2329–2344, 2017.
[4] M. Böhme, V.-T. Pham, and A. Roychoudhury. Coverage-based greybox

fuzzing as markov chain. In CCS, pages 1032–1043, 2016.
[5] M. Chandramohan, Y. Xue, Z. Xu, Y. Liu, C. Y. Cho, and H. B. K.

Tan. Bingo: Cross-architecture cross-os binary search. In FSE, pages
678–689, 2016.

[6] H. Chen, Y. Li, B. Chen, Y. Xue, and Y. Liu. Fot: A versatile,
configurable, extensible fuzzing framework. In ESEC/FSE, pages 867–
870, 2018.

[7] H. Chen, Y. Xue, Y. Li, B. Chen, X. Xie, X. Wu, and Y. Liu. Hawkeye:
Towards a desired directed grey-box fuzzer. In CCS, pages 2095–2108,
2018.

[8] X. Du, B. Chen, Y. Li, J. Guo, Y. Zhou, Y. Liu, and Y. Jiang. Leop-
ard: Identifying vulnerable code for vulnerability assessment through
program metrics. arXiv preprint arXiv:1901.11479, 2019.

[9] P. Godefroid, M. Y. Levin, and D. A. Molnar. Automated whitebox fuzz
testing. In NDSS, 2008.

[10] R. Malhotra. A systematic review of machine learning techniques for
software fault prediction. Applied Soft Computing, 27(C):504–518, 2015.

[11] S. Rawat, V. Jain, A. Kumar, L. Cojocar, C. Giuffrida, and H. Bos.
Vuzzer: Application-aware evolutionary fuzzing. In NDSS, 2017.

[12] R. Scandariato, J. Walden, A. Hovsepyan, and W. Joosen. Predicting
vulnerable software components via text mining. IEEE Transactions on
Software Engineering, 40(10):993–1006, 2014.

[13] T. Wang, T. Wei, G. Gu, and W. Zou. Taintscope: A checksum-aware
directed fuzzing tool for automatic software vulnerability detection. In
SP, pages 497–512, 2010.

[14] M. Woo, S. K. Cha, S. Gottlieb, and D. Brumley. Scheduling black-box
mutational fuzzing. In CCS, pages 511–522, 2013.

[15] Z. Xu, B. Chen, M. Chandramohan, Y. Liu, and F. Song. Spain: Security
patch analysis for binaries towards understanding the pain and pills. In
ICSE, pages 462–472, 2017.

[16] F. Yamaguchi, N. Golde, D. Arp, and K. Rieck. Modeling and
discovering vulnerabilities with code property graphs. In SP, pages
590–604, 2014.

[17] Y. Zhang, D. Lo, X. Xia, B. Xu, J. Sun, and S. Li. Combining software
metrics and text features for vulnerable file prediction. In ICECCS,
pages 40–49, 2015.

[18] Y. Zhou, Y. Yang, H. Lu, L. Chen, Y. Li, Y. Zhao, J. Qian, and B. Xu.
How far we have progressed in the journey? an examination of cross-
project defect prediction. ACM Transactions on Software Engineering
and Methodology, 27(1):1, 2018.

[19] T. Zimmermann, N. Nagappan, and L. Williams. Searching for a needle
in a haystack: Predicting security vulnerabilities for windows vista. In
ICST, pages 421–428, 2010.

131

